The symbol 5 tells us nothing about five. The icon ••••• is five.
Volume I describes ensemble arithmetic and James Algebra, two boundary forms that greatly simplify common arithmetic.
Eliminating sets, logic and functions leads to postsymbolic thinking. Volume II provides formal foundations.
Volume III is now available (3/2021). It includes a plethora of innovations to our arithmetic of numbers.
Links to narrated videos that show the dynamic structure of the two postsymbolic forms of arithmetic explored in the books.
Logic is one distinction. The article shows how to cross the chasm between symbolic and postsymbolic form.
In binary mode, the Iconic Calculator adds and subtracts by grouping units and merging boundaries.
In decimal unit mode, the Iconic Calculator uses the Additive Principle rather than the Rules of Arithmetic.
In decimal digit mode, the Iconic Calculator uses depth-value notation to add and subtract in parallel.
Animated container numbers add by merging boundaries and multiply by substitution.
Animated network numbers add by being placed side-to-side and multiply by being placed top-to-bottom.
Iconic form comes in linear, planar and spatial versions. Manipulatives provide physical meaning.
James algebra uses three types of boundaries to express all the operations of arithmetic.
Boundary logic eliminates duality, converts deduction into deletion, and simplifies critical thinking.
i (the square root of –1) is the multiplicative imaginary. J (the logarithm of –1) is the additive imaginary.
Boundary logic provides powerful tools for the optimization of semiconductor circuits.
Iconic math is expressed physically by enclosures, blocks, paths, maps, rooms, trees and graphs.