
Copyright © 2019 William M. Bricken. All rights reserved.

Laws of Form 50th Anniversary Conference
August 9, 2019

William Bricken

william@iconicmath.com

BOUNDARY LOGIC:
The Design of Computation

Copyright © 2019 William M. Bricken. All rights reserved.

Style

 – 15 years of exploration within several companies,
 focussing on work with Dick Shoup

– trying to find the most challenging applications for LoF logic
 optimization of 100,000 logic gate benchmark and industrial circuit designs

– applications to computational software and silicon hardware only;
 no philosophy, no pure mathematics, no infinite excursions

– pure boundary logic and technique only, no hybrid systems

The presentation is a broad overview
that shows technical applications of LoF from

software engineering
logic optimization
semiconductor design
software/hardware co-design.

This presentation can be downloaded at iconicmath.com

Copyright © 2019 William M. Bricken. All rights reserved.

Contents

 ((!V1 (@ =V2))
 (V3 ((V4)(q)))
 (V5 (((V3)(!V1)) (V5s (V3 !V1))))
 (=V6 (((V3 V5s)((V3)(V5s)))))
 (=V2s (((=V6 !V1)((=V6)(!V1))))))

(A B C D) ==> (((A B)) ((C D)))

(A ()) =
 ((A)) = A
A {A B} = A {B}

(((a)((a) b))) b
 (a)((a) b) b
 (a)() b
 ()

 α, (α |= β) |= β ––> (((α) ((α) β))) β

 Grounding
natural computing project
fundamental concepts
boundary logic research

 Applications
artificial intelligence programming
semiconductor optimization
circuit design generation
reconfigurable hardware design
innovative hardware design

a
b

WRITE-Data

Row-ACTIVE=1

READ/not-WRITE

(B) = (A ()) (B (A () (A ())))

Copyright © 2019 William M. Bricken. All rights reserved.

Applications of LoF
 Advanced Decisions Systems (1984-1988)

– intelligent software editor and behavioral query language
– parallel deduction engines
– artificial intelligence inference and contradiction maintenance

 Interval Research Corporation (1993-2000)

– propositional and predicate logic deduction engines
– combinational circuit synthesis and optimization
– circuit design generation
– form abstraction
– hardware/software design integration
– sequential circuit synthesis and optimization

 Boundary Institute, Unary Computers, BTC (2001-2006)

– circuit design generation, mapping and routing
– abstraction, partitioning and layout optimization
– novel reconfigurable hardware architectures
– iconic logic optimizing compiler

logic engines

hardware/software
 co-design

 design automation
 and
hardware integration

Copyright © 2019 William M. Bricken. All rights reserved.

Dedicated Funding
Interval Research Corporation

– Paul Allen’s silicon valley research company, 1993-2000
– 50-80 researchers pursuing their own agendas
– $80 million/year budget
– all research and development held in trade secrecy

The Natural Computing Project led by Dick Shoup

 If you could redesign silicon computation,
without concern for backward compatibility, what would you build?

– Foundational math and theory (15 person-years)
– Language and interface (15 person-years)
– Architecture and tools (15 person-years)
– Applications and commercialization (5 person-years)

LoF was the central organizing principle for
– design of new mathematical foundations for computation
– integration of interactive software tools
– development of visual specification languages
– construction of reconfigurable hardware architectures

Copyright © 2019 William M. Bricken. All rights reserved.

New Foundations
Goals

– mathematics that directly supports formal verification
– hierarchical algebraic design language
– unification of hardware and software design
– formal verification of benchmark and industrial semiconductor designs

Logic engines Bricken and James
– propositional and predicate calculus engines
– distinction networks
– hierarchical and functional abstraction
– multilevel combinational and sequential circuit optimization

Transition analysis Shoup and Furtek
– computation as signal propagation and change (vs objects and states)
– sequential and behavioral verification

Link theory Etter and Shoup
– a general theory of formal structure
– connectivity defines information and independence

today

Copyright © 2019 William M. Bricken. All rights reserved.

FUNDAMENTAL CONCEPTS

Peanuts

Copyright © 2019 William M. Bricken. All rights reserved.

Take Nothing Seriously
Empty containers permit the semantic use of syntactic non-existence.

~~~  The Principle of Void-Equivalence  ~~~
Void-equivalent forms are syntactically irrelevant and semantically inert. 

Void-equivalence 
–  forms and patterns can be equated to void

Void-substitution
–  substitution of void for a void-equivalent form returns nothing to non-existence

Void-based pattern transformation 
–  void-equivalent forms can be deleted at will
–  void-equivalent forms can be constructed anywhere throughout a form

(A ( )) =

(B (A ( ))) = (B        )

(B) = (A ( )) (B (A ( ) (A ( ))))

but they can still be used to catalyze change

( )  contains nothing on the inside.
Void has no properties and supports no relations.



Copyright © 2019  William M. Bricken.  All rights reserved. 

Void-based Reasoning

Structure
–  all forms are containers
–  boundaries distinguish their contents
–  contents are inherently independent
–  logic boundaries are semipermeable
–  many multidimensional options for representation

Computational technique
   –  pattern-directed structural transformation
   –  deletion of irrelevant structure rather than collection of facts

–  depth insensitive operations across boundaries
–  non-intrusive, query-based identification of valid deletions
–  proof is reduction of form to void

replication provides diversity

single concept system* 
contains  serves as 

a ground
an object

a unary operator
a binary relation
a data structure

a transformation pattern

Garfield

* W. Bricken  (2017)  Distinction is Sufficient, Cybernetics and Human Knowing, 24(3-4), p.29-74.

replication is the 
source of complexity



Copyright © 2019  William M. Bricken.  All rights reserved. 

Boundary Permeability 

* W. Bricken  (1994)  Inclusive Symbolic Environments, in K. Duncan & K. Krueger (eds) Proceedings of the 13th World Computer Congress, v3, Elsevier Science, p.163-170.

By convention, the semantic viewpoint is on the outside.*  
(We are outside of the space of representation.)

Crossing without permission changes intent.

Impermeable boundaries do not permit forms to cross.
  –  a model for numerics

Semipermeable boundaries permit crossing in one direction only.
–  a model for logic

Fully permeable boundaries do not distinguish their contents. 
–  a model for imaginary forms

Logic boundaries are transparent to their context. 
Forms on the outside are arbitrarily present in every interior space.

              
curly braces denote any intervening structure

 Pervasion   A {A B} = A {B}



Copyright © 2019  William M. Bricken.  All rights reserved. 

Parallel and Sequential Partitioning
Forms in the same container are independent. 

They do not interact and can be processed in parallel.

    (A 
       B 
         C    parallel processes
           D 
             E)            

Parallel partitions are structured by containment width. 

Forms nested within other forms are structurally dependent
and require sequential processing.

    (A (B (C (D (E)))))    sequential processes

Sequential partitions are structured by containment depth.   



Copyright © 2019  William M. Bricken.  All rights reserved. 

Syntactic Variety

paths

parens

graphs

mapscentered maps

enclosures

trees

rooms

blocks

W. Bricken (2006)  Syntactic Variety in Boundary Logic, in D. Barker-Plummer et  al (eds) Diagrams 2006  LNAI 4045, Springer-Verlag, p.73-87.



Copyright © 2019  William M. Bricken.  All rights reserved. 

1977–2007:   Hawaii, Palo Alto, Sausalito, Seattle
–  algebraic theory development
–  LISP implementation
–  rigorous applications
–  pragmatic applications
–  application generalization
–  visual and experiential languages

BOUNDARY  LOGIC 
ALGORITHMS and RESEARCH



Copyright © 2019  William M. Bricken.  All rights reserved. 

Algebraic Pattern-Equations

 ((A)) = A                             Involution

(A ( )) =                               Occlusion

A {A B} = A {B}                 Pervasion

Curly braces refer to any deeper intervening structure.
Each pattern proceeds from left to right by deletion of structure.

There is no analogy in conventional mathematical technique.

Axioms
halting condition

boundary deletion

form deletion

Useful Theorems
 (A) {B (A N)} = (A) {B}            Subsumption

((A B)(A C)) = A ((B)(C))           Distribution

((A (B))(C (A))) = (A B) ((A)(C))           Pivot

to manage structural tangles

void occlusion

reflexion

extended generation

transposition

Spencer-Brown:



Copyright © 2019  William M. Bricken.  All rights reserved. 

Boolean and Boundary Logic

The boundary logic “constant”: ( )
The boundary logic “function”: (a)
The boundary logic “relation”: (a)b

  boolean                    boundary                      

FALSE

TRUE ( )
NOT a (a)
a OR b  a b
NOT (a OR b) (a b)
IF a THEN b (a) b
a AND b ((a)(b))
a EQUALS b (a b)((a)(b))

  boolean                     

TRUE

FALSE 
NOT a

a AND b

NOT (a AND b) 
NOT (IF b THEN a)

a OR b

a NOT EQUALS b

object and operator 
are subsumed
by pattern

   dual



Copyright © 2019  William M. Bricken.  All rights reserved. 

One-to-Many Mapping
One boundary form represents many different conventional logic expressions.  

A one-to-many mapping is necessary for one system to be simpler.

The particular logical interpretation of a given boundary form is a free choice.

0 = 0 OR 0 = 0 OR 0 OR 0 = ...

    ( )

1
NOT 0
1 OR 0
0 OR 1 OR 0
0 NOR 0
(NOT 0) OR 0
NOT (0 OR 0)
NOT (0 OR 0) OR (0 OR 0)
...

   ((a)(b))

a AND b
b AND a
NOT (NOT a OR NOT b)
NOT a NOR NOT b
NOT (a NAND b)
(a AND b) OR 0
NOT (a NAND (0 OR b)) OR 0
NOT (b NOR 0) OR NOT a OR 0
...

void



Copyright © 2019  William M. Bricken.  All rights reserved. 

Table of Non-Correspondence 

symbols                     strings                     icons                    linear vs spatial

constants                   {0,1}                  { ( ) }               two vs one

duality                        objects                    spaces                 existence 

mapping                   functional             structural               values vs patterns

unary operator             NOT                       none                  existence

binary operator         AND, OR                   contains                two vs one

arity                           specific                  variary                 countable vs not

commutativity            linear                      none                   existence

associativity               binary                   nesting                 non-associative

rearrangement       distribution             pervasion              regroup vs construct

computation             rearrange                 delete                  void-equivalence

random valuation     50% TRUE              ~64.7% ( )            symmetric vs asymmetric

LoF is not Boolean. 

boolean      boundary       difference 



Copyright © 2019  William M. Bricken.  All rights reserved. 

Proof of Modus Ponens

 (((a)((a) b))) b transcription

   (a)((a) b)   b involution ((A)) ==> A

   (a)(     )   b pervasion A (A B) ==> A (B)

      (     ) dominion A ( ) ==> ( )

  (a AND (a IMPLIES b)) IMPLIES b
                                          

  (a AND    (a) b     ) IMPLIES b a IMPLIES b ––> (a) b
                                       

  ((a)  (  (a) b  )  ) IMPLIES b a AND X ––> ((a)(X))
                                       

( ((a)  (  (a) b  )  ) )       b X IMPLIES b ––> (X) b

Transcribe

Reduce

Interpret
TRUE                   ( ) ––> TRUE

  α, (α  |= β)  |= β ––> (( (α) ((α) β) )) β

values
expressions
collections

  (a AND (a IMPLIES b)) IMPLIES b modus ponens



Copyright © 2019  William M. Bricken.  All rights reserved. 

Virtual Insertion Technique

Broad Subsumption   (a b c) (a (d (b (c e)))) =?= (a b c) (a (d (b)))

(a b c) (a (d (b (c e) (a b c))))    insert (a b c)
(a b c) (a (d (b (c e) (    c))))    extract a b
(a b c) (a (d (b       (    c))))    subsume (c e)   
(a b c) (a (d (b              )))    discard (c)

Outer forms pervade all inner spaces.
Their hypothetical presence as queries can trigger structural deletions.

(a) ((a) a b)   insert (a)              

(a) (( ) a b)   extract a                 

(a)   occlusion
                                       

Simple Subsumption    (a) (a b) =?= (a) virtual forms in red

virtual!



Copyright © 2019  William M. Bricken.  All rights reserved. 

Equivalence by Query

         ((a)(b))(a (b (c)))            b (a c)          A B
         ((a)( ))(a (  (c)))            b (a c)          extract b
                 (a (  (c)))            b (a c)          occlusion
                 (a     c  )            b (a c)          involution
                                        b (a c)          extract (a c)
                     void                                  discard b (a c)

  A = B   iff   A B = A B =             virtual extraction method

((a)(b)) (a (b (c))) =?= b (a c)

           b (a c)          ((a)(b))(a (b (c)))          B A
           b (a c)          ((a)( ))(a (  (c)))          extract b
           b (a c)                  (a (  (c)))          occlusion
           b (a c)                  (a     c  )          involution
           b                        (a     c  )          extract (a c)
           b                                             discard (a c)
         ((b)                    )                       involution
         ((b) ((a)(b))(a (b (c))))                       insert A
         ((b) ((a)   )(a (b (c))))                       extract (b)
         ((b) ((a)   )(a        ))                       subsume (b (c))
         ((b) (      )(a        ))                       extract (a)
                     void                                  occlusion

binate



Copyright © 2019  William M. Bricken.  All rights reserved. 

1981–1988:   Advanced Decision Systems & Stanford University 
–  propositional theorem prover
–  intelligent program editor (semantic debugger for Ada)
–  behavioral query language
–  LoF-based programming language
–  software optimization
–  AI inference engine
–  inference with contradictions
–  asynchronous parallel computation (Intel Hypercube)

ARTIFICIAL INTELLIGENCE 
PROGRAMMING



Copyright © 2019  William M. Bricken.  All rights reserved. 

LoF Deductive Engines

First-order Logic
–  predicate calculus with quantification
–  built-in theory of equality
–  skolemization, unification, demodulation
–  Boolean minimization and symmetry detection
–  selected domain theories

Configurable Computation
–  partial case analysis, partial function evaluation
–  generate counter-examples if possible
–  identify parallel and sequential components
–  parallel propositional logic implemented on a 16-core processor

Inconsistency Maintenance
–  capture, isolate and use contradiction without degradation

Pure boundary logic data structures and algorithms.

used for code optimization
rather than theorem proving



Copyright © 2019  William M. Bricken.  All rights reserved. 

Executable Code
This very efficient LISP code implements Occlusion and Involution

recursively to simplify and evaluate logic expressed as parens forms. 
Readability is achieved by renaming common LISP functions.

(instructions-to apply-atomic-deletion-reduction
  (with-any (form)
    (take-these-steps
      ((if-its-an-atom form) form)
      ((if-theres-a-ground-mark-inside-the form) nothing)
      ((if-its-a-compound form)
        (simplify 
          (the-result-of
            (the simplification-of-each-part-of-the) form)))
      ((if-its-an-atom (inside-of-the form)) form)
      ((if-theres-a-ground-mark-inside-the (inside-of-the form)) ground-mark)
      ((if-the-contents-are-compound form)
        (simplify 
          (the-container-of 
            (the-result-of
              (the simplication-of-each-part-of-the) (inside-of-the form)))))
      (otherwise (apply-atomic-deletion-reduction 
                  (to-whats-in-the-double-container-of-the form))))))



Copyright © 2019  William M. Bricken.  All rights reserved. 

Asynchronous Parallel Deduction Engine (1987)

parallel processors display animation

execution
traces

distinction network

reduction
    rules

logic 
input

boundary logic linear form

W. Bricken and E. Gullichsen (1989)  An Introduction to Boundary Logic with the Losp Deductive Engine, Future Computing Systems 2(4), p.1-77.



Copyright © 2019  William M. Bricken.  All rights reserved. 

1994–2000:   Interval Research Corporation & Seattle University
–  Boolean satisfiability, Boolean minimization
–  predicate calculus deductive engine
–  combinational and sequential circuit optimization (area and delay)
–  mapping to reconfigurable hardware

SEMICONDUCTOR  
OPTIMIZATION



Copyright © 2019  William M. Bricken.  All rights reserved. 

Circuit Structures in Boundary Logic

a
b
c

a
b
c
d

a
b

c
d

a

b

carry
sum

(a ((b)(c)))

((b c d) ((a)(b)(c)))

((d)(a b c))

sum   = (carry (a b))  
carry = ((a)(b))



Copyright © 2019  William M. Bricken.  All rights reserved. 

Distinction Networks

                        4-bit Magnitude Comparator with enables

 ((eq 1) (gt 2) (lt 3)) 

  ((1  ((j)(a (b))(b (a))(c (d))(d (c))(e (f))(f (e))(g (h))(h (g)))           ) 

   (2  ((i ((j)((g (h))((h (g))((e (f))((f (e))((c (d))(a (b)(d (c)))))))))))  ) 

   (3  ((k ((j)((h (g))((g (h))((f (e))((e (f))((d (c))(b (a)(c (d)))))))))))  )))

A distinction network (dnet) circuit propagates disconnects.

Equal

Less

Gr eater
A

B

C

J

K

G

F

I

H

E

D

fully expanded

three outputs

eleven inputs



Copyright © 2019  William M. Bricken.  All rights reserved. 

Structure Sharing
 ((eq 12) (gt 34) (lt 35))    -- output pins 

  ((1   ( a)               ) 
   (2   ( b)               ) 
   (3   ( c)               ) 
   (4   ( d)               ) 
   (5   ( e)               )  -- INVERTERS
   (6   ( f)               ) 
   (7   ( g)               ) 
   (8   ( h)               ) 
   (9   ( j)               ) 
   (10  (30)               ) 
   (11  (33)               ) 
   (12  (31)               ) 
   (13  (32)               ) 
   (14  (a 2)              ) 
   (15  (b 1)              ) 
   (16  (c 4)              ) 
   (17  (d 3)              )  -- NOR2 gates 
   (18  (e 6)              ) 
   (19  (f 5)              ) 
   (20  (g 8)              ) 
   (21  (h 7)              ) 
   (22  (( j)(20))         ) 
   (23  (( j)(21))         ) 
   (24  ((11)(16))         ) 
   (25  ((11)(17))         )  -- AND2 gates 
   (26  ((10)(18))         ) 
   (27  ((10)(19))         ) 
   (28  ((13)(14))         ) 
   (29  ((13)(15))         ) 
   (30  (( 9 20 21))       ) 
   (31  ((14 15 32))       )  -- OR3 gates 
   (32  ((16 17 33))       ) 
   (33  ((18 19 30))       ) 
   (34  ((i 22 24 26 28))  )  -- OR5 gates 
   (35  ((k 23 25 27 29))  )))

Technology library
{ INV, NOR2, AND2, OR3, OR5 }  fanout = 3
{(A),(A B),((A)(B)),((A B C)),((A B C D E))}

Multilevel circuits fanout from logic gates 
to share computational resources.

 
Distinction network format
     –  Each row is a cell. 
 

–  A cell consists of a label  
and a boundary logic form. 

 

–  Letters are input labels. 
 

–  Numbers are cell labels. 
 

–  To expand a cell, 
substitute a form for a label. 

 

–  The circuit is technology mapped 
when the form in each cell

  matches a library form.

Fanout in represented by the number 
of references to a particular dnet cell.



Copyright © 2019  William M. Bricken.  All rights reserved. 

Evaluation by Occlusion

(A ( )) =Occlusion

Evaluation is asynchronous and strongly parallel.
Inputs are either deleted (0) or asserted as a distinction (1).

a
b

a
b

0

a
b

disconnect a

circuit fragment 
is disconnected

sufficient for 
evaluation



Copyright © 2019  William M. Bricken.  All rights reserved. 

Distinction Network Optimization

Communication between nodes is local with no global coordination. 

W. Bricken (1995)  Distinction Networks, in I. Wachsmuth et al (eds) KI-95 Advances in Artificial Intelligence, Springer, p.35-48.

Pervasion
A {A B} = A {B}

Involution
((A)) = A

Occlusion
(A ( )) =

void

sufficient for 
reduction

Transformation is asynchronous and strongly parallel.



Copyright © 2019  William M. Bricken.  All rights reserved. 

Path Deletion by Pervasion

arbitrary
logic block

Reducing reconvergence simplifies timing.

a ( a b )  
a (   b )

((a) ((a)(b)))  
((a) (   (b)))  
((a)      b  )

((a) { … ((a)(…)) })  
((a) { … (   (…)) })  
((a) { …      …   })

Example I Example II Example III

a

b

a

b

a

b

a

b

a

b

a

any
any

a

any
any



Copyright © 2019  William M. Bricken.  All rights reserved. 

Technical EDA Issues
Circuit design industry (Electronic Design Automation)

–  400,000 engineers in US
–  $400 billion/year industry
–  VLSI design:  more than 1 million logic gates 
–  computational circuits over 50 billion transistors
–  memory units over 1 trillion transistors

VLSI:  Very Large Scale Integration of semiconductor chips
–  delay minimization and global optimization
–  verification and equivalence testing
–  technology mapping to different libraries and architectures
–  symmetry detection and abstraction
–  timing and synchronization
–  power consumption
–  fault tolerance
–  manufacturability and yield

Resistance to change
–  existing tools are excellent
–  disruptive technologies can cost more in retraining than they gain in performance



Copyright © 2019  William M. Bricken.  All rights reserved. 

1999–2002:   Interval Research Corporation & BTC
–  logic synthesis (area and delay)
–  technology mapping
–  design exploration, abstraction, partitioning

CIRCUIT  DESIGN  
GENERATOR



Copyright © 2019  William M. Bricken.  All rights reserved. 

Current Techniques (4-bit comparator)

 two-level logic (PLA)

multiplexor logic (MUX)

multilevel logic (ASIC)

binary decision diagram (BDD)

Pattern: A ((B)(C)) => ((A B)(A C))

Pattern: (((A) B) (A C)) Pattern: occlusion paths



Copyright © 2019  William M. Bricken.  All rights reserved. 

Multilevel Structural Optimization

EDA software generated design remove redundancy

reduce reconvergence reduce fanout 
Pattern:  ((A B)(A C)) => A ((B)(C))

Pattern: A (A B) => A (B)

boundary logic optimized design



Copyright © 2019  William M. Bricken.  All rights reserved. 

Technology Mapping

reduced critical timing path, fanout = 4
Library:   { INV, NOR2, NOR3, NOR4, NOR9 }
Pattern:  (A ((B)(C))) ==> (A B)(A C)

3 gate pipeline, fanin = 2

specific library, fanin = 2, fanout = 3
Library:      { NOR2, OR2, NAND2, AND2, XOR2 }
Pattern: (A B C D) ==> (((A B)) ((C D)))

4-input look-up tables
Library:            { INV, NOR2, OR2 }
Pattern:   (A (B (C (D (E (F))))))

Library:                 { 4LUT }
Pattern:    (A (B (C (D (E)))))



Copyright © 2019  William M. Bricken.  All rights reserved. 

Design for Testability
 ((eq 36) (gt 20) (lt 21)) 

  ((1   ( a)       ) 
   (2   ( b)       ) 
   (3   ( c)       ) 
   (4   ( d)       ) -- INVERTERS
   (5   ( e)       ) 
   (6   ( f)       ) 
   (7   ( g)       ) 
   (8   ( h)       ) 
   (9   ( j)       ) 
   (10  (12)       ) 
   (11  (13)       ) 
   (12  (a 2)      ) 
   (13  (b 1)      ) 
   (14  (c 4)      ) -- NOR2 gates 
   (15  (d 3)      ) 
   (16  (e 6)      ) 
   (17  (f 5)      ) 
   (18  (g 8)      ) 
   (19  (h 7)      ) 
   (20  ((i 22))   ) -- OR2 gates 
   (21  ((k 23))   ) 
   (22  ( 9 32)    ) 
   (23  ( 9 34)    ) 
   (24  (10 15)    ) 
   (25  (11 14)    ) 
   (26  (14 24)    ) -- NOR2 gates 
   (27  (15 25)    ) 
   (28  (16 31)    ) 
   (29  (16 27)    ) 
   (30  (17 29)    ) 
   (31  (17 26)    ) 
   (32  (18 35)    ) 
   (33  (18 30)    ) 
   (34  (19 33)    ) 
   (35  (19 28)    ) 
   (36  ( 9 45)    ) 
   (39  ((12 13))  ) 
   (40  ((14 15))  ) -- OR2 gates 
   (41  ((16 17))  ) 
   (42  ((18 19))  ) 
   (43  ((39 40))  ) 
   (44  ((41 42))  ) 
   (45  ((43 44))  )))

Technology library 
    { INV, NOR2, OR2 } fanout = 3
    {(A),(A B),((A B))}

Minimal structural variance 
–  maximum fanin = 2 
–  maximum fanout = 3 
–  fast transistor chain
–  no reconvergence 
–  enables bypass functional logic



Copyright © 2019  William M. Bricken.  All rights reserved. 

Behavioral Abstraction

Functional abstractionMinimized design

Parallel abstractionSequential abstraction



Copyright © 2019  William M. Bricken.  All rights reserved. 

Vector Abstraction
(((oa =17)) 
  ((!1   (@  35)  ) 
   (!2   (@ =66)  ) 
   (!3   (@ =67)  ) 
   (!4   (@ =68)  ) 
   (!5   (@ =69)  ) 
   (!6   (@ =70)  ) 
   (!7   (@ =71)  ) 
   (!8   (@ =72)  ) 
   (!9   (@ =73)  ) 
   (!10  (@ =74)  ) 
   (!11  (@ =75)  ) 
   (!12  (@ =76)  ) 
   (!13  (@ =77)  ) 
   (!14  (@ =78)  ) 
   (!15  (@ =79)  ) 
   (!16  (@ =80)  ) 
   (!V1  (@ =V2)  ) 

   (18  (( a)(q))  ) 
   (19  (( b)(q))  ) 
   (20  (( c)(q))  ) 
   (21  (( d)(q))  ) 
   (22  (( e)(q))  ) 
   (23  (( f)(q))  ) 
   (24  (( g)(q))  ) 
   (25  (( h)(q))  ) 
   (26  (( i)(q))  ) 
   (27  (( j)(q))  ) 
   (28  (( k)(q))  ) 
   (29  (( l)(q))  ) 
   (30  (( m)(q))  ) 
   (31  (( n)(q))  ) 
   (32  (( o)(q))  ) 
   (33  (( p)(q))  ) 
   (V3  ((V4)(q))  )

(=66   (((=50  !1) ((=50)( !1))))  ) 
(=67   (((=51  !2) ((=51)( !2))))  ) 
(=68   (((=52  !3) ((=52)( !3))))  ) 
(=69   (((=53  !4) ((=53)( !4))))  ) 
(=70   (((=54  !5) ((=54)( !5))))  ) 
(=71   (((=55  !6) ((=55)( !6))))  ) 
(=72   (((=56  !7) ((=56)( !7))))  ) 
(=73   (((=57  !8) ((=57)( !8))))  ) 
(=74   (((=58  !9) ((=58)( !9))))  ) 
(=75   (((=59 !10) ((=59)(!10))))  ) 
(=76   (((=60 !11) ((=60)(!11))))  ) 
(=77   (((=61 !12) ((=61)(!12))))  ) 
(=78   (((=62 !13) ((=62)(!13))))  ) 
(=79   (((=63 !14) ((=63)(!14))))  ) 
(=80   (((=64 !15) ((=64)(!15))))  )   
(=17   (((=65    ) ((=65)(   ))))  ))) 
(=V2s  (((=V6 !V1) ((=V6)(!V1))))  )

(35  (((18)( !1)) (36  (18  !1)))  ) 
(36  (((19)( !2)) (37  (19  !2)))  ) 
(37  (((20)( !3)) (38  (20  !3)))  ) 
(38  (((21)( !4)) (39  (21  !4)))  ) 
(39  (((22)( !5)) (40  (22  !5)))  ) 
(40  (((23)( !6)) (41  (23  !6)))  ) 
(41  (((24)( !7)) (42  (24  !7)))  ) 
(42  (((25)( !8)) (43  (25  !8)))  ) 
(43  (((26)( !9)) (44  (26  !9)))  ) 
(44  (((27)(!10)) (45  (27 !10)))  ) 
(45  (((28)(!11)) (46  (28 !11)))  ) 
(46  (((29)(!12)) (47  (29 !12)))  ) 
(47  (((30)(!13)) (48  (30 !13)))  ) 
(48  (((31)(!14)) (49  (31 !14)))  ) 
(49  (((32)(!15)) (82  (32 !15)))  ) 
(82  (((33)(!16)) (( ) (33 !16)))  ) 
(V5  (((V3)(!V1)) (V5s (V3 !V1)))  ) 

(=50  (((18 36) ((18)(36))))   ) 
(=51  (((19 37) ((19)(37))))   ) 
(=52  (((20 38) ((20)(38))))   ) 
(=53  (((21 39) ((21)(39))))   ) 
(=54  (((22 40) ((22)(40))))   ) 
(=55  (((23 41) ((23)(41))))   ) 
(=56  (((24 42) ((24)(42))))   ) 
(=57  (((25 43) ((25)(43))))   ) 
(=58  (((26 44) ((26)(44))))   ) 
(=59  (((27 45) ((27)(45))))   ) 
(=60  (((28 46) ((28)(46))))   ) 
(=61  (((29 47) ((29)(47))))   ) 
(=62  (((30 48) ((30)(48))))   ) 
(=63  (((31 49) ((31)(49))))   ) 
(=64  (((32 82) ((32)(82))))   ) 
(=65  (((33 !16)((33)(!16))))  ) 
(=V6  (((V3 V5s)((V3)(V5s))))  )

((!V1   (@ =V2)                       ) 
 (V3    ((V4)(q))                     ) 
 (V5    (((V3)(!V1)) (V5s (V3 !V1)))  ) 
 (=V6   (((V3 V5s)((V3)(V5s))))       ) 
 (=V2s  (((=V6 !V1)((=V6)(!V1))))     ))

Vectorized form

Pseudo-circuit

8-bit sequential multiplier

common 
patterns 
in red



Copyright © 2019  William M. Bricken.  All rights reserved. 

2002–2004:   Unary Computers & BTC
–  dynamically reconfigurable hardware design
–  design abstraction, partitioning, place&route

RECONFIGURABLE  
HARDWARE DESIGN



Copyright © 2019  William M. Bricken.  All rights reserved. 

Logic Block Architecture

2004 wire technology:  130 µm
2004 block area:       16,000 µm2  (.016 mm2)
2004 gate density:      12,000 gates/mm2

one block = 200 ASIC gates

one cell
~2.5 ASIC gates 

cell interconnect

registers
block output

logic cells

block input

2019 wire technology:  7 µm 
2019 block area:          30 µm2 

2019 gate density: 6,000,000 gates/mm2

Each block coordinates 80 cells as 
a single unified timed logic element.

Each cell can be dynamically reconfigured 
to the functionality of about 
2.5 conventional logic gates.

Hundreds of conventional circuits 
expressed as dnets were statistically 

analyzed for common patterns of distinctions.

Cells are designed to cover dnet patterns.

hierarchical pipelined multilevel logic



Copyright © 2019  William M. Bricken.  All rights reserved. 

Place and Route 

5-bit sum outputcarry output

carry input two 5-bit inputs
labels represent cell 

configurations

5-bit adder

Optimization, layout and routing generated by applying
simple boundary pattern transformations.

one block is 
equivalent to ~200 
synchronized logic 

gates
signal flow



Copyright © 2019  William M. Bricken.  All rights reserved. 

Reconfigurable Chip Architecture

2004 chip:         32 block-neighborhoods provide 100,000 logic gates
2019 chip:         10,000 neighborhoods provide 30,000,000 logic gates

one block = 200 ASIC gates

one block-neighborhood = 3,200 ASIC gates

2019 technology is 300 times smaller

Co-designed software specification and 
hardware layout using distinction patterns

Fine-grain control of logic/routing trade-offs

Synchronized timing eliminates timing analysis
       2004 delay: 1.8 ns per block, any logic

                        2.7 ns across chip, any location

Regular cell structure for ease of  fabrication

chip area: 7 x 7 mm =  49 mm2



Copyright © 2019  William M. Bricken.  All rights reserved. 

1997-2005:   Interval Research Corporation & Unary Computers
exotic architectures
      –  bit-stream circuit simulator
      –  boundary logic RISC instruction set

                          –  inverting bar architecture
      –  reconfigurable occlusion array
      –  reconfigurable computation mesh

INNOVATIVE  
HARDWARE DESIGN 

(alternative dnet architectures)



Copyright © 2019  William M. Bricken.  All rights reserved. 

Reconfigurable Occlusion Array   

Dnets are implemented as a spatial array of distinctions.
Wiring is virtual. Connectivity is a threaded array of disconnection locations.

Change is virtual. Disconnection is recorded by marking a memory cell.
Timing is virtual. Terminates when all output distinctions are marked.

4-bit magnitude comparator

(A ( )) =
Occlusion

like a Pachinko 
machine

unary rather 
than binary 



Copyright © 2019  William M. Bricken.  All rights reserved. 

Reconfigurable Computational Mesh 

optimized 4-bit comparator

WRITE-Data

Row-ACTIVE=1

READ/not-WRITE

DRAM crosspoint
    –  standard memory cell
    –  WRITE to configure circuit
    –  READ to run circuit

Use memory architecture for computation.

The spatial configuration of memory bits is the circuit.

New circuits are built as quickly as memory WRITE 
and run as fast as memory READ.



Copyright © 2019  William M. Bricken.  All rights reserved. 

Conclusion

We have been developing the theory and application of 
boundary mathematics for two decades.  

The extent to which boundary techniques differ from well 
known forms of mathematics is both a major 

political challenge and a significant technical advantage.

This presentation has emphasized boundary logic.  
There are equally interesting developments in 

imaginary and re-entrant boundary forms 
and in boundary numerics.



Copyright © 2019  William M. Bricken.  All rights reserved. 

THANK YOU!
william@iconicmath.com

recent work:   ICONIC ARITHMETIC

NEW 2018                  NEW 2019            COMING 2020

simple
sensual

postsymbolic

William Bricken, Ph.D.

LUME II

RA C DP S Q

simple
sensual

postsymbolic

William Bricken, Ph.D.

LUME II


