BOUNDARY LOGIC:
The Design of Computation

Laws of Form 50th Anniversary Conference
August 9, 2019

William Bricken

william@iconicmath.com

Copyright © 2019 William M. Brick

Al rights reserved.

Style

15 years of exploration within several companies,

Jocussing on work with Dick Shoup

trying to find the most challenging applications for LoF logic
optimization of 100,000 logic gate benchmark and industrial circudt designs

— applications to computational software and silicon hardware only;
no philosophy, no pure mathematics, no infinite excursions

— pure boundary logic and technique only, no hybrid systems

The presentation is a broad overview
that shows technical applications of LoF from
software engineering
logic optimization
semiconductor design
software/hardware co-design.

This presentation can be downloaded at iconicmath.com

Copyright © 2019 William M. Brick

All rights reserved.

F Contents

@ e

Grounding

natural computing project
p € pPTo) (A B CD) ==> ((CAB)) ((CD

fundamental concepts

A C» boundary logic research (X b)) b
A @@ b) b
@C) b

ATABE=A DB} Applications <o

artificial intelligence programming i

u
>

semiconductor optimization

circuit design generation

reconfigurable hardware design
5 innovative hardware design

(B =CAC B CAC)ACN

E =10 2
EREERBEEE

e

ivr (@ =v2))
3 (V@) 5
V5 (COV3X(IVI)) (VSs (V3 1VI)))) |
(=V6 (((V3 V5s)(C V3)(V55)))))
(=V2s (((=V6 1VI)((=V6I(!V1)))) p)

o, (o =p) |=p —> (CCa) (I PINP

Copyright © 2019 William M. Bricken. All rights reserved.

Applications of LoF

Advanced Dectstons Systems (1984-1988)

— intelligent software editor and behavioral query language

— parallel deduction engines ~O®m0 mb®w50m
— artificial intelligence inference and contradiction maintenance

Interval Research Corporation (1995-2000)

— propositional and predicate logic deduction engines
— combinational circuit synthesis and optimization
— circuit design generation

. hardware/software
— form abstraction

co-design

hardware/software design integration
— sequential circuit synthesis and optimization

Boundary Institute, Unary Computers, BTC (2001-2006)

— circuit design generation, mapping and routing mmmmﬁb automation
abstraction, partitioning and _m%o:w optimization an &

— novel amoozmmcamr_m hardware architectures

— iconic logic optimizing compiler

hardware integration

Copyright © 2019 William M. Bricken. All rights reserved.

Dedicated Funding

Interval Research Corporation

— Paul Allen’s silicon valley research company, 1993-2000
— 50-80 researchers pursuing their own agendas

— $80 million/year budget

— all research and development held in trade secrecy

The Natural Computing Project led by Dick Shoup

1f you could redesign silicon computation,
without concern for backward compatibility, what would you build?

— Foundational math and theory (15 person-years)
— Language and interface (15 person-years)
— Architecture and tools (15 person-years)

Applications and commercialization (5 person-years)

LoF was the central organizing principle for
— design of new mathematical foundations for computation
— integration of interactive software tools
— development of visual specification languages
— construction of reconfigurable hardware architectures

Copyright © 2019 William M. Bricken. All rights reserved.

New Foundations

Goals

— mathematics that directly supports formal verification
— hierarchical algebraic design language
— unification of hardware and software design

— formal verification of benchmark and industrial semiconductor designs

NQPQR, N\N.thm_\ Bricken and James <«—— today
— propositional and predicate calculus engines
distinction networks

— hierarchical and functional abstraction

— multilevel combinational and m@LC@:Qm_ circuit c_:m:iNm&c:

Transition «NEQ\QQ 1 Shoup and Furtek
— computation as signal propagation and change (vs objects and states)

— sequential and behavioral verification

Link ¢ \MNQQ Etter and Shoup
—a mm:mﬂm_ armod\ of formal structure

— connectivity defines information and independence

Copyright © 2019 William M. Bricken. All rights reserved.

FUNDAMENTAL CONCEPTS

¥)

Peanuts

I'M PRACTICING M

DID 40U KNOW THAT IF 4YOU EVER SEE A
BRACKETS.. £

BRACKETS ARE ALWAVS | | BRACKET BY ITSELF,
USED IN PAIRS 7 YOU CAN BE SURE TS5
UP TO NO GOOD'!

£3:£3:01

Copyright © 2019 William M. Bricken. All rights reserved.

Take Nothing Seriously

Empty containers permit the semantic use of syntactic non-existence.
() contains nothing on the inside.

Void has no \:.:\::,Q.E and supports 720 relations.

Void-equivalence A

— forms and patterns can be equated to i

Void-substitution BCAC =@

— substitution of

for a void-equivalent form returns nothing to non-existence

Void-baved pattern transformation (B) = (A (D) (BCAC)CAC

— void-equivalent forms can be deleted at will
- <cmm.m£5<w_m=ﬁ forms can be constructed m:v)i.m_)m w—:‘ccmrcﬁn a form

~~~ The Principle of Void-Equivalence ~~~

Void-equivalent formo are syntactically irrelevant and semantically inert.

but \\:\._\ can otill be used to E:S\. yze A,\E:.Qm

Copyright © 2019 William M. Bricken. All rights reserved.




Void-based Reasoning

Garfield KickeD s AT At 5,
% 5 )
e
H
H
H
Structure aingle concept system™
) contains verves as
— all forms are containers a ground
— boundaries distinguish their contents an object

a unary operalor
a binary relation
a data structure
a transformation pattern

contents are inherently independent

logic boundaries are semipermeable
— many multidimensional options for representation

replication provides diversity

Computational technigue
— ﬁmﬁm_}:.m?mgmm structural transformation
— deletion of irrelevant structure rather than collection of facts
— depth insensitive operations across boundaries
— non-intrusive, query-based identification of valid deletions
— proof is reduction of form to w2

*W. Bricken (2017) Distinction is Sufficient, Cybernetics and Human Knowing, 24(3-4), p.29-74.
Copyright © 2019 William M. Brick

Al rights reserved.

Boundary Permeability

Impermeable boundaries do not permit forms to cross.
— amodel for numerics

N

Semipermeable boundaries permit crossing in one direction only. B

— amodel for logic C
Fully permeable boundaries do not distinguish their contents. LU
— amodel for imaginary forms L

Logic boundaries are transparent to their context.
Forms on the outside are arbitrarily present in every interior space.

A {A B} = A {B}

Pervasion

curly braces denote any intervening structure

By convention, the semantic viewpoint is on the outside.
(We are outside of the space of representation.)
Crossing without permission changes intent.

*W. Bricken (1994) Inclusive Symbolic Environments, in K. Duncan & K. Krueger (eds) Proceedings of the 13th World Computer Congress, v3, Elsevier Science, p.163-170.

Copyright © 2019 William M. Bricken. All rights reserved.

Parallel and Sequential Partitioning

Forms in the same container are independent.
They do not interact and can be processed in parallel.

Ay

C parallel processes

D
)

Parallel partitions are structured by containment width.

Forms nested within other forms are structurally dependent
and require sequential processing.
(A (B (C (D (ED)D

sequential processes

Sequential partitions are structured by containment depth.

Copyright © 2019 William M. Bricken. All rights reserved.

Syntactic Variety

\
'
'
'
'
'
'
'
'

N

((a b)((a)(b))) ((a b)((a)(b)))

N —=

i
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
'
\

W. Bricken (2006) Syntactic Variety in Boundary Logic, in D. Barker-Plummer et al (eds) Diagrams 2006 LNAI 4045, Springer-Verlag, p.73-87.
Copyright © 2019 William M. Bricken. All rights reserved.




BOUNDARY LOGIC
ALGORITHMS and RESEARCH

1977-2007: Hawaii, Palo Alto, Sausalito, Seattle

— algebraic theory development

— LISP implementation

— rigorous applications

— pragmatic applications

— application generalization

— visual and experiential languages

Copyright © 2019 William M. Brick

Al rights reserved.

Algebraic Pattern-Equations

Axiomy SoencerBrown,
pencer-Brown:
AACHY = Occlusion void occlusion
ﬁ ﬁ>u U =A Involution reflexion
A .ﬁ> WW = A MW“M. Pervasion extended generation

Curly braces refer to any deeper intervening structure.
Each pattern proceeds from left to right by deletion of structure.

There is no analogy in conventional mathematical technique.

Useful Theoremys wral tangles
(A) {B (AN} = (A {B} Subsumption
(CABYCAO) =A (B Distribution tranaposition

(CA (B)(C (AX)) = (A B) ((AX(C)) Pivot

Copyright © 2019 William M. Brick

All rights reserved.

Boolean and Boundary Logic

DUAL
BOOLEAN BOOLEAN BOUNDARY

TRUE FALSE

FALSE TRUE @)

NOT @ NOT a (a)

amp b aomb ab

NOT Ca AND b) NOT (a OR b) (a b)

NOT (IF b THEN a) IF 0 THEN b (@) b

aorb a A b (@)

a NOT EQUALS b a EQUALS b (a bY((a)(b))
The boundary logic “constant” @)
The boundary logic “function” (ad ot
The boundary logic “relation”: (a),

Copyright © 2019 William M. Bricken. All rights reserved.

One-to-Many Mapping

One boundary form represents many different conventional logic expressions.
A one-to-many mapping is necessary for one system to be simpler.

The particular logical interpretation of a given boundary form is a free choice.

@) (Cad (b))

1 a AND b

NOT @ b AND a

10R 0 NOT (NOT @ OR NOT b)

@ O0R 10RO NOT @ NOR NOT b

0 NOR @ NOT (a NAND b)

(NOT @) OR @ (a AND b) OR @

NOT (@ OR @) NOT Ca NAND (@ OR b)) OR @
NOT (@ OR @) OR (@ OR @) NOT (b NOR @) OR NOT a OR @

void

O =00RQ=00RO0RD = .

Copyright © 2019 William M. Bricken. All rights reserved.




Table of Non-Correspondence

LoF is not Boolean.

BOOLEAN BOUNDARY DIFFERENCE
symbols strings icons linear vs spatial
constants {0,1} { (OO} two vs one
duality objects spaces existence
mapping functional structural values vs patterns
unary operator NOT none existence
binary operator AND, OR contains two vs one
arity specific variary countable vs not
commutativity linear none existence
associativity binary nesting non-assoclative
rearrangement  distribution pervasion regroup vs construct
computation rearrange delete void-equivalence
random valuation ~ 50% TRUE ~64.7% () symmetric vs asymmetric

Copyright © 2019 Willi

M. Bricken. All rights reserved

Proof of Modus Ponens

(a AND (a IMPLIES b)) IMPLIES b

o, (o [=B) |=Bp ——> (C(a) ((a) BI DI B

\SQ%RQ ponend

Transcribe

(a AND (a IMPLIES b)) IMPLIES b

(a AND (a) b

(Ca) C (@b ) ) IMPLIES b

) IMPLIES b

a IMPLIES b —> (a) b

a AND X —> ((a)(XD))

Ca C@b H>)Hd) b X IMPLIES b —> (XD b
Reduce
((Ca)((a) b)) b transcription
(@)(Ca) b) b involution A ==> A
(ad( ) b pervasion A (A B) ==> A (B)
¢ ) dominion AC) == ()
Interpret
TRUE () --> TRUE

Copyright © 2019 William M. Bricken. All rights reserved.

Virtual Insertion Technique

Ouler formy pervade all inner spaces.

Their hypothetical presence as quertes can trigger structural deletions.

Stmple Subsumption (a) (a b) =?= (a) virtual forma in red
(@) (Ca) a b) insert (a)
(ad C(C ) abd extract a
mnu occlusion

Broad Subsumption  (ab c) (a (d (b (c e)))) =?= (abc) (ad B

(abc) (a(d (ce)Cab )

insert (a b ¢

(abc) (a(d @ ce)C [$)))) extract a b
mQ b nu AQ mn_ Qu m nuuuu subsume (c e)
(abc) (add (D D) discard (c) virtual!

Copyright © 2019 William M. Bricken. All rights reserved.

Equivalence by Query

(Cad()) Ca (b (c))) =?=b (ac)

A=B Jf AB=AB-S= virtual extraction method
(Cad(b))(a (b () b (a o AB
(@ N ¢ DN b (a © extract b
(a C (N b (a © occlusion
(a c ) b (a ©) involution
b (a ) extract (a ¢)
void discard b (a ©)
b (a o (Cad(b>3(a (b (D)) B A
b (a © (a0 ¢ N extract b
b (a o (a C (DN occlusion
b (a o (a c ) involution
b (a c ) extract (a ©)
b discard (a ©)
(b D] involution
[((ORICICHICRCEIID)) insert A
[(ORCCIEEDICRCECID)) extract (b)
() (@ )(a D)) subsume (b (c))
(b C )(a D)) extract (a)

votd

occlusion

Copyright © 2019 William M. Bric}

Al rights reserved.




ARTIFICIAL INTELLIGENCE
PROGRAMMING

1981-1988: Advanced Decision Systems & Stanford University

— propositional theorem prover

— intelligent program editor (semantic debugger for Ada)
— behavioral query language

— LoF-based programming language

— software optimization

— Al inference engine

— inference with contradictions

— asynchronous parallel computation (Intel Hypercube)

Copyright © 2019 William M. Bricken. All rights reserved.

LoF Deductive Engines

Pure boundary logic data structures and algorithms.

First-order Logic
— predicate calculus with quantification
— built-in theory of equality
— skolemization, unification, demodulation
— Boolean minimization and symmetry detection
— selected domain theories

Configurable Computation

- m.ﬁim_ case w:w_%mmm. @E.&w— function evaluation

generate counter-examples if possible

identify parallel and sequential components

parallel propositional logic implemented on a 16-core processor

Inconvistency Maintenance

— capture, isolate and use contradiction without degradation

Copyright © 2019 m M. Bricken. All rights reserved.

Executable Code

This very efficient LISP code implements Occlusion and Involution
recursively to simplify and evaluate logic expressed as parens forms.

Readability is achieved by renaming common LISP functions.

(instructions-to apply-atomic-deletion-reduction
(with-any (form)
(take-these-steps
((if-its-an-atom form) form)
((if-theres-a-ground-mark-inside-the form) nothing)
((if-its-a-compound form)
(simplify
(the-result-of
(the simplification-of-each-part-of-the) form)))
((if-its-an-atom (inside-of-the form)) form)
((if-theres-a-ground-mark-inside-the (inside-of-the form)) ground-mark)
((if-the-contents-are-compound form)
(simplify
(the-container-of
(the-result-of
(the simplication-of-each-part-of-the) (inside-of-the form)))))
(otherwise (apply-atomic-deletion-reduction
(to-whats-in-the-double-container-of-the form))))))

Copyright © 2019 William M. Bricken. All rights reserved.

Asynchronous Parallel Deduction Engine a7

parallel processors | — display animation

logic
m:_u:»

execution

traces

ctivated mothod add_uppers,
for d13 adding upper (d2.

o i

aonces N{% reduction

tivated method erase for

* CLARIFY completed for di2

o rules

TG o) (s e

boundary logic linear form L dis

nction network

W. Bricken and E. Gullichsen (1989) An Introduction to Boundar

gic with the Losp Deductive Engine, Future Computing Systems 2(4), p.1-77

Copyright © 2019 m M. Bric

Al rights reserved.




SEMICONDUCTOR
OPTIMIZATION

1994-2000: Interval Research Corporation & Seattle University

— Boolean satisfiability, Boolean minimization

— predicate calculus deductive engine

— combinational and sequential circuit optimization (area and delay)
— mapping to reconfigurable hardware

Copyright © 2019

m M. Bricken. All rights reserved.

Circuit Structures in Boundary Logic

S
Q n T Q9

Ca (I ((d(a b <))

a carry
C
d

sum (carry (a b))
(b ¢ d) ((a(bd())) carry = ((a)(b))

S Q

Copyright © 2019 William M. Bricken. All rights reserved.

Distinction Networks

A distinetion network (dnet) circutt propagates disconnects.

three outputs

eleven inputs M@‘

4-bit Magnitude Comparator with enables fully expanded

((eq 1) (gt 2) (1t 3))

(1 ((3)(a (b)) (b (a))(c (d))(d (c)) (e (£)) (£ (e))(g (h))(h (9))) )
(2 ((2 ((3) (g (h)) ((h (g)) ((e (£)) ((£ (e)) ((c (d))(a (B)(d (c))))))))))) )
(3 ((k ((3)((h (9)) ((g (b)) ((£ (e)) ((e (£)) ((d (e)) (b (a)(c (d))))))))))) )))

Copyright © 2019 William M. Bricken. All rights reserved.

Structure Sharing

Multilevel circuits fanout from logic gates ((eq 12) (gt 34) (1t 35)) -~ output pins
to vhare mz\:\EEE:E\ redourced. AMW M ww W
. 3
Fanout in represented by the number Ms M MW W
of references to a particular dnet cell. MM M MW W -~ INVERTERS
(7 (9 )
.o . o (8 ( h) )
Distinction network format (o (3 )
(10 (30) )
_ Each rowis a cl. a1 G )
— A cell consists of a label Mww Mwnwv W
and a boundary logic form. (15 (b 1) )
. (16 (c 4) )
— Letters are input labels. (17 (d 3) ) -- NORZ gates
(18 (e 6) )
— Numbers are cell labels. (19 (£ 5) )
(20 (g 8) )
— To expand a cell, (21 (b 7) )
substitute a \M:.\: \M:, a label. (22 (( u”v (20)) )
) (23 (( 3)(21)) )
— The circuit is technology mapped (24 ((11) (16)) )
when the form in each cell 25 (anam) ) 77 ANDZ gates
B (26 ((10) (18)) )
matches a library form. (27 ((10) (19)) )
(28 ((13) (14)) )
(29 ((13) (15)) )
. (30 (( 920 21)) )
Technology library (1 ((14 15 32)) ) - OR3 gates
32 ((16 17 33
{ INv, NOR2, AND2, OR3, OR5 } fanout =3 Muu MM; 19 uoww W
34 ((i 22 24 26 28 - ORS gat:
£, (A B),CCAI(BY), (CA B ©),(CA B C D D} G5 (k23282120 1y o

Copyright © 2019 William M. Bricken. All rights reserved.




Evaluation by Occlusion

sufficient for

evaluation OOO_-HMWOHH ﬁ> ﬁ VV =

cireudl fragment E

Lo disconnected

disconnect a

Inputs are either deleted (@) or asserted as a distinction (1).

Evaluation is asynchronous and strongly parallel.

Copyright © 2019 William M. Brick

Al rights reserved.

Distinction Network Optimization

aufficient for

reduction OGG——HMmAu: QV&/“
A (= .
Involution w = % =
(A=A ¥
A A A
Pervasion VM =
A {A B} = A {B} ‘
A B A B A B

Communtcation between nodes s local with no global coordination.

= vl

Transformation is asynchronous and strongly parallel.

W. Bricken (1995) Distinction Networks, in 1. Wachsmuth eral (eds) KI-95 Advances in Artificial Intelligence. Springer. p.35-48.

Copyright © 2019 William M. Brick

All rights reserved.

Path Deletion by Pervasion

a a a
b b any
any
a a a
b b any
any
a /m_;_um:‘wd\
b logic block
Example 1 Example 1T Example 117
aCab) (CONCCI(D)D)) (@ { . DC) BH
aC b)) (@ ¢ (1) (@W{.C O
(@ b ) () { . - D

Reducing reconvergence simplifies timing.

Copyright © 2019 William M. Bricken. All rights reserved.

Technical EDA Issues

Circuit &mwmﬁb mD&meﬂv\ (Electronic Design Automation)
— 400,000 engineers in US
— $400 billion/year industry
— VLSI design: more than 1 million logic gates
— computational circuits over 50 billion transistors
— memory units over 1 trillion transistors

VLSI: Very Large Scale Integration of semiconductor chips
— delay minimization and global optimization
— verification and equivalence testing
— technology mapping to different libraries and architectures
— symmetry detection and abstraction
— timing and synchronization
— power consumption
— fault tolerance
— manufacturability and yield

Resistance to change

- mwmmmsw tools are excellent
- xm:.:\‘:,_i \E,\EN:\:,QN.E can cost more tn \AEZZ.\:.:,Q than \\Eﬁ\,%:.: in \:‘\,‘\M:.::::.\

Copyright © 2019 William M. Bricken. All rights reserved.




Oﬁﬂﬂ@bﬁ H@OTSW@S@M (4-bit comparator)

1177 al

-

7998909909

CIRCUIT DESIGN
GENERATOR L

two-level logic (PLA)
Pattern: A ((B)(C)) => ((ABY(A ©))

9 999

oy

1999-2002: Interval Research Corporation & BTC i

“BLE 5 L5
— logic synthesis (area and delay) g ﬁruﬁ | »,vn.@ I . -
— ﬁmcr:o_omu\ mapping - [t _ufﬁnur I ﬁ?ﬁﬂw ) e
— design exploration, abstraction, partitioning : + D 53 ;
| s, |00
B T S B e ,
1 i e =

multiplexor logic (MUX)
Pattern: (CCA) B) (A O)) Pattern: occlusion paths

Copyright © 2019 William M. Bricken. All rights reserved. Copyright © 2019 William M. Bricken. All rights reserved.

Multilevel Structural Optimization Technology Mapping

,rwrfvyuv TEE m : Wv
> = Fa wwmwr.._wv
p—— ‘

i
\f
9

4

ty— >l
o> ,MHL

<
; apectfic library, fanin =2, fanout =3 reduced critical timing path, fanout =4
EDA %\.&ER .&QRSR& w@@: remove redundancy Library:  {NOR2, OR2, NAND2, AND2, XORZ } Library: {INV, NOR2, NOR3, NOR4, NOR9}
Pattern: A (A B) => A (B) Pattern: (A B C D) ==> (CCA B)) ((C D)) Pattern: (A ((B)(C))) ==> (A B)(A O

< e

o 1o " , .

o : o -
, > =i s

= =

: o M = e -

= o
il S - I o _—
o = =3 = e — .
= 5 gale pipeline, fanin =2 T-input look-up tables

reduce reconvergence reduce fanout Library: {INV, NOR2, OR2} Library: {aLuT}
Pattern:  ((A BY(A ©)) => A ((BX(D)) boundary logic optimized design Pattern: (A (B (C (D CE (F)))))) Pattern: (A (B (C (D CEDDN

Copyright © 2019 William M. Bricken. All rights reserved. Copyright © 2019 William M. Bricken. All rights reserved.




Design for Testability

Behavioral Abstraction

.. . ((eq 36) (gt 20) (1t 21))
Minimal structural variance @ (a ) - o
. ! [ER ) - [ ey
— maximum fanin =2 G (o )
— maximum fanout =3 FE ] ) -~ INVERTERS T e
o —
i i (6 (£ ) - Ls
— fast transistor chain MM M mw W |
— no reconvergence o (9 ) I
— enables bypass functional logic & a3 ) - L
(12 (a2 ) e e ey plll=
(13 (b 1) ) . g. fnsaon ..
(14 (c 4) ) -- NOR2 gates . — "
. (15 (d 3) )
(16 (e 6) ) =
. (17 (£ 5) ) e e A . .
) as ) Minimized design Functional abstraction
- (20 ((i22)) ) -- OR2 gates
B (21 ((k 23)) )
i (22 (9 32) )
(23 ( 9 34) )
D (24 (10 15) ) oy o 7
(25 (11 14) ) : —— e
(26 (14 24) ) -- NORZ gates ot d s - 7
B (27 (15 25) )
(28 (16 31) ) = = .
(29 (16 27) ) | - ;
(30 (17 29) ) e R
”ﬁl_ (31 (17 26) ) . = S—
(32 (18 35) ) 1 HJ
L (33 (18 30) ) o . T
. (34 (19 33) )
= (35 (19 28) ) . S e —
. (36 (9 45) ) r L, T ” = H ] T Lo
v (39 ((12 13)) ) = S —
&WQ\N\NQ\NNQQ \N%\ NN\Q (40 ((14 15)) ) -- OR2 gates ﬁ o E
{ INV, NOR2, OR2 } fanout=3 (a2 ({16 1)) )
(43 ((39 40)) ) . . .
{(A), (A B),((A B)D} (a2 (a1 a2 ) Sequential abstraction Parallel abstraction
(45 ((43 48)) )
Copyright © 2019 William M. Bricken. All rights reserved. Copyright © 2019 William M. Bricken. All rights reserved.
Vector Abstracti
(((oa =17))
o (@ 35 ) (35 (((18)( '1)) (36 (18 (=66 (((=50 ((=50 )
(12 (e =66) ) (36 (((19)( '12)) (37 (19 (=67 (((=51 ((=51 )
(13 (e =67) ) (37 (((20) ( 13)) (38 (20 (=68 (((=52 ((=52 )
(ra (@ =68) ) (38 (((21)( '4)) (39 (21 (=69 (((=53 ((=53. )
('s (@ =69) ) (39 (((22)( '5)) (40 (22 (=70 (((=54 ((=54 )
(16 (@ =70) ) (40  (((23)( '6)) (41 (23 (=71 (((=55 ((=55. )
(7 (@ =71) ) (41 (((24)( '7)) (42 (24 (=72 (((=56 ( (=56 )
('8 @ =72) ) (42 (((25)( '8)) (43 (25 (=73 (((=57 ((=57) ( )
(to (e =73) ) (43 (((26) ( 19)) (44 (26 (=74 (((=58 ((=58) ( ! )
(110 (e =74) ) (44 (((27) (110)) (45 (27 (=75 (((=59 ((=59) (110 ) ‘ OZTAHO— gw _ m
(111 (e =75) ) (45 (((28) ('11)) (46 (28 (=76 (((=60 ((=60) (111 ) .
(112 (e =76) ) (46 (((29) (112)) (47 (29 (=77 (((=61 ((=61) (112 ) common
(113 (@ =717) ) (47 (((30)('13)) (48 (30 (=78 (((=62 ((=62) (113 ) patterns
(114 (@ =78) ) (48  (((31)('14)) (49 (31 (=79 (((=63 ((=63) (114 ) n red
(115 (@ =79) ) (49 (((32)('15)) (82 (32 (=80 (((=64 ((=64) (115 ) >H_WNU ,x \>H_Wu—w“ mMHO /
('16 (@ =80) ) (82  (((33)(!'16)) (() (33 (=17 (((=65 ((=65) ( )
('vi (@ =v2) ) (V5 (((V3)(!'Vl)) (V5s (V3 (=v2s  (((=V6 ((=ve) (!v1 )
(18 ((a)(ad) ) (=50 (((18 36) ((18)(36)))) )
(19 ((bB) (@) ) (=51 (((19 37) ((19)(37)))) )
(20 ((e)(@) ) (=52 (((20 38) ((20)(38)))) ) 200
(21 ((d) (@) ) (=53 (((21 39) ((21)(39)))) ) §5w5\§ .\Mw\a\\N
(22 ((e) () ) (=54 (((22 40) ((22) (40)))) )
(23 (( £) (@) ) (=55  (((23 41) ((23)(41)))) ) ((tvi (e =v2) )
(24 ((@(@) ) (=56 (((24 42) ((24)(42)))) ) (v3 ((v4) (q)) )
(25 ((h) (@) ) (=57 (((25 43) ((25)(43)))) ) ) 1
(26 (( i) (@) ) (=58 (((26 44) ((26)(44)))) ) AMm (((v3) (1v1)) (VSs (V3 V1)) )
(7 ((3) (@) ) (=59 (((27 45) ((27)(45)))) ) (=V6  (((V3 V5s) ((V3) (V5s)))) )
@8 (K@) ) (=60 (((28 46) ((28)(46)))) ) (=v2s (((=V6 V1) ((=V6) (1¥1))))  )) 2002-2004: Unary Computers & BTC
(29 (( () ) (=61 (((29 47) ((29) (47)))) )
(30 ((m)(a)) ) (=62 (((30 48) ((30) (48)))) ) _ . .
(Gl ((n) (@) ) (=63 (((31 49) ((31)(49)))) ) Poewdo-circuit mv:._.miﬂnm__v\ -do.o:mmc?w.v._m _w_wﬁmccmam design
(32 ((o) (@) ) (=64 (((32 82) ((32)(82)))) ) JeUdo-clreul — design abstraction, partitioning, place&route
(33 ((p) (@) ) (=65 (((33 !16) ((33)('16)))) )
3 ((va) (@) ) (=V6  (((V3 V5s) ((V3) (V5s)))) )
. . . . VA )i
- =V6 =V2shi ft
8-bit mmm:mzﬁm_ Ec_ﬁwrma =

Copyright © 2019 William M. Bricken. All rights reserved.

Vsshi ft

Copyright © 2019 William M. Bricken. All rights reserved.




Logic Block Architecture

block input
hierarchical pipelined multilevel logic
cell interconnect
Hundreds of conventional circuits
expressed as dnets were slatistically
analyzed for common patterns of distinctions.
Cells are designed to cover dnet patterns. logic cells

Each cell can be dynamically reconfigured
to the functionality of about
2.5 conventional logic gates.

<«— one cell
~2.5 ASIC gates

Each block coordinates 80 cells as
a single unified timed logic e

went.

regusters
block oulput

one block = 200 ASIC gates

2004 wire technology: 130 pm 2019 wire technology: 7 pm
2004 block area: 16,000 pm? (.016 mm2) 2019 block area: 30 pm?
2004 gate mw_‘.mmwvﬁ 12,000 gates/mm? 2019 gate mw_‘.mmwvﬁ 6,000,000 gates/mm?

Copyright © 2019 Willi

M. Bricken. All rights reserved

Place and Route

5-bit adder

carry :%S, o two 5-bit inputs
SEI sl SEEe
BEosbabbinotibng
oodgabalbilih b s bl

0pu)
BTpu)

- Q% ox © w

CERE S B B B

o

¢

carry output 5-bit sum output

Optimization, layout and routing generated by applying
simple boundary pattern transformations.

Copyright © 2019 William M. Bricken. All rights reserved.

Reconfigurable Chip Architecture

2019 technology s 500 times smaller

Configurable I/O Cells and Pads ; D

[ Global Communication Hubs —>[]

e
;
%
7

Co-designed software specification and
hardware layout using duwtinction patterns

Fine-grain control of logic/routing trade-offs

z
£

2004 delay: 1.8 ns per block, any logic
2.7 ns across chip, any location

EETE
~ T

one block-neighborhood = 3,200 ASIC gates % @ @

D chip area: 7x 7mm = 49 mm? D7 ;D

Regular cell structure for ease of fabrication

Synchronized timing eliminates timing analysis %

—] [
one block = 200 ASIC gates

SEES|mISS=EISSEE

2004 chip: 32 block-neighborhoods provide 100,000 logic gates
2019 nrmmz 10,000 :mmm.rvo_)roomm _u_)oimm 30,000,000 _ommn gates

Copyright © 2019 William M. Bricken. All rights reserved.

INNOVATIVE
HARDWARE DESIGN

(alternative dnet architectures)

1997-2005: Interval Research Corporation & Unary Computers

exotic architectures
— bit-stream circuit simulator
— boundary logic RISC instruction set
— inverting bar architecture
— reconfigurable occlusion array
— reconfigurable computation mesh

Copyright © 2019 William M. Bricken. All rights reserved.




Reconfigurable Occlusion Array

4-bit magnitude comparator

‘,

1_

Occlusion

AC) =

input
vector

Dnets are implemented as a spatial array of distinctions.
Wiring is virtual. Connectivity is a threaded array of disconnection locations.
Change is virtual. Disconnection is recorded by marking a memory cell.

Timing is virtual. Terminates when all output distinctions are marked.

Copyright © 2019 William M. Bricken. All rights reserved.

Reconfigurable Computational Mesh

Use memory architecture for computation.

The spatial configuration of memory bils ts the circut.

New circuits are budlt as quickly as memory WRITE

and run as fast as memory READ.

Row-ACTIVE=1

READ/ not- WRITE
WRITE-Data

"1 DRAM crosspoint
- — standard memory cell
— WRITE to configure circuit

L. . ; — READ to run circuit
optimized 4-bit comparator

Copyright © 2019 William M. Bricken. All rights reserved.

Conclusion

We have been developing the theory and application of
boundary mathematics for two decades.

The extent to which boundary techniques differ from well
known forms of mathematics is both a major
political challenge and a significant technical advantage.

This presentation has emphasized boundary logic.
There are equally interesting developments in
imaginary and re-entrant boundary forms
and in boundary numerics.

Copyright © 2019 William M. Bricken. All rights reserved.

THANK YOU!

william@iconicmath.com

recent work: 1CONIC ARITHMETIC

[dnic , I | Lo¥ini

Arithmeti rithimetic \richmetic

NEW 2018 NEW 2019 COMING 2020

Copyright © 2019 William M. Bricken. All rights reserved.




