
C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

Law
s of Form

 50th A
nniversary C

onference
A

ugust 9, 2019

W
illiam

 B
ricken

w
illiam

@
iconicm

ath.com

B
O

U
N

D
A

RY L
O

G
IC

:
T

he D
esign of C

om
putation

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

Style

 – 15 years of exploration w
ithin several com

panies,
 focussing on work with D

ick Shoup

– trying to find the m
ost challenging applications for L

oF logic
 optim

ization of 100,000 logic gate benchm
ark and industrial circuit designs

– applications to com
putational softw

are and silicon hardw
are only;

 no philosophy, no pure m
athem

atics, no infinite excursions

– pure boundary logic and technique only, no hybrid system
s

T
he presentation is a broad overview

that show

s technical applications of L
oF from

softw

are engineering
logic optim

ization
sem

iconductor design
softw

are/hardw
are co-design.

T
his presentation can be dow

nloaded at iconicm
ath.com

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

C
ontents

 ((!V1 (@ =V2))
 (V3 ((V4)(q)))
 (V5 (((V3)(!V1)) (V5s (V3 !V1))))
 (=V6 (((V3 V5s)((V3)(V5s)))))
 (=V2s (((=V6 !V1)((=V6)(!V1))))))

(A B C D) ==> (((A B)) ((C D)))

(A ()) =
 ((A)) = A
A {A B} = A {B}

(((a)((a) b))) b
 (a)((a) b) b
 (a)() b
 ()

 α
, (α

 |= β) |= β ––> ((
 (α)

 ((α)
 β)

))
 β

 G
rounding

natural com
puting project

fundam
ental concepts

boundary logic research

 Applications
artificial intelligence program

m
ing

sem
iconductor optim

ization
circuit design generation
reconfigurable hardw

are design
innovative hardw

are design
a b

W
RITE-Data

Row
-A

CTIVE=1

REA
D/not-W

RITE

(B) = (A ()) (B (A () (A ())))

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

A
pplications of L

oF
 Advanced D

ecisions System
s (1984-1988)

– intelligent softw
are editor and behavioral query language

– parallel deduction engines
– artificial intelligence inference and contradiction m

aintenance

 Interval Research C
orporation (1993-2000)

– propositional and predicate logic deduction engines
– com

binational circuit synthesis and optim
ization

– circuit design generation
– form

 abstraction
– hardw

are/softw
are design integration

– sequential circuit synthesis and optim
ization

 Boundary Institute, U
nary C

om
puters, BT

C
 (2001-2006)

– circuit design generation, m
apping and routing

– abstraction, partitioning and layout optim
ization

– novel reconfigurable hardw
are architectures

– iconic logic optim
izing com

piler

logic engines

hardw
are/softw

are
 co-design

 design autom
ation

 and
hardw

are integration

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

D
edicated Funding

Interval Research C
orporation

– Paul A
llen’s silicon valley research com

pany, 1993-2000
– 50-80 researchers pursuing their ow

n agendas
– $80 m

illion/year budget
– all research and developm

ent held in trade secrecy

T
he N

atural C
om

puting Project led by D
ick Shoup

 If you could redesign silicon com
putation,

without concern for backward com
patibility, what would you build?

– Foundational m
ath and theory (15 person-years)

– L
anguage and interface (15 person-years)

– A
rchitecture and tools (15 person-years)

– A
pplications and com

m
ercialization (5 person-years)

L
oF w

as the central organizing principle for
– design of new

 m
athem

atical foundations for com
putation

– integration of interactive softw
are tools

– developm
ent of visual specification languages

– construction of reconfigurable hardw
are architectures

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

N
ew

 Foundations
G

oals– m
athem

atics that directly supports form
al verification

– hierarchical algebraic design language
– unification of hardw

are and softw
are design

– form
al verification of benchm

ark and industrial sem
iconductor designs

Logic engines Bricken and Jam
es

– propositional and predicate calculus engines
– distinction netw

orks
– hierarchical and functional abstraction
– m

ultilevel com
binational and sequential circuit optim

ization

Transition analysis Shoup and Furtek
– com

putation as signal propagation and change (vs objects and states)
– sequential and behavioral verification

Link theory Etter and Shoup
– a general theory of form

al structure
– connectivity defines inform

ation and independence

today

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

F
U

N
D

A
M

E
N

T
A

L C
O

N
C

E
PT

S

Peanuts

C
opyright ©

 2019 W
illiam

 M
. B

ricken. A
ll rights reserved.

Take N
othing Seriously

Em
pty containers perm

it the sem
antic use of syntactic non-existence.

~~~  T
he Principle of V

oid-E
quivalence  ~~~

Void-equivalent form
s are syntactically irrelevant and sem

antically inert. 

Void-equivalence 
–  form

s and patterns can be equated to void

Void-substitution
–  substitution of void for a void-equivalent form

 returns nothing to non-existence

Void-based pattern transform
ation 

–  void-equivalent form
s can be deleted at w

ill
–  void-equivalent form

s can be constructed anyw
here throughout a form

(A
 (

 )) =

(B
 (A

 (
 ))) = (B   

  
   )

(B) = (A
 (

 ))
 (B

 (A
 (

 )
 (A

 (
 ))))

but they can still be used to catalyze change

(
 )  contains nothing on the inside.

Void has no properties and supports no relations.



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

V
oid-based R

easoning

Structure
–  all form

s are containers
–  boundaries distinguish their contents
–  contents are inherently independent
–  logic boundaries are sem

iperm
eable

–  m
any m

ultidim
ensional options for representation

C
om

putational technique
   –  pattern-directed structural transform

ation
   –  deletion of irrelevant structure rather than collection of facts

–  depth insensitive operations across boundaries
–  non-intrusive, query-based identification of valid deletions
–  proof is reduction of form

 to void

replication provides diversity

single concept system
* 

contains  serves as 
a ground
an object

a unary operator
a binary relation
a data structure

a transform
ation pattern

G
arfield

* W
. Bricken  (2017)  D

istinction is Sufficient, C
ybernetics and H

um
an K

now
ing, 24(3-4), p.29-74.

replication is the 
source of com

plexity

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

B
oundary Perm

eability 

* W
. Bricken  (1994)  Inclusive Sym

bolic Environm
ents, in K

. D
uncan &

 K
. K

rueger (eds) Proceedings of the 13th W
orld C

om
puter C

ongress, v3, Elsevier Science, p.163-170.

B
y convention, the sem

antic view
point is on the outside. *  

(W
e are outside of the space of representation.)

C
rossing w

ithout perm
ission changes intent.

Im
perm

eable boundaries do not perm
it form

s to cross.
  

–  a m
odel for num

erics

Sem
iperm

eable boundaries perm
it crossing in one direction only.

–  a m
odel for logic

Fully perm
eable boundaries do not distinguish their contents. 

–  a m
odel for im

aginary form
s

L
ogic boundaries are transparent to their context. 

Form
s on the outside are arbitrarily present in every interior space.

              
curly braces denote any intervening structure

 P
ervasion   A

 {A
 B}

 =
 A

 {B}

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Parallel and Sequential Partitioning
Form

s in the sam
e container are independent. 

T
hey do not interact and can be processed in parallel.

    (A 
       B 
         C 

   parallel processes
           D 
             E)          
  

Parallel partitions are structured by containm
ent w

idth. 

Form
s nested w

ithin other form
s are structurally dependent

and require sequential processing.

    (A (B (C (D (E)))))
   sequential processes

Sequential partitions are structured by containm
ent depth.   

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Syntactic V
ariety

paths

parens

graphs

m
aps

centered m
aps

enclosures

trees

room
s

blocks

W
. Bricken (2006)  Syntactic Variety in Boundary Logic, in D

. Barker-Plum
m

er et  al (eds) D
iagram

s 2006  LN
A

I 4045, Springer-Verlag, p.73-87.



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

1977–2007:   H
aw

aii, Palo A
lto, Sausalito, Seattle

–  algebraic theory developm
ent

–  L
ISP im

plem
entation

–  rigorous applications
–  pragm

atic applications
–  application generalization
–  visual and experiential languages

B
O

U
N

D
A

RY  L
O

G
IC 

A
LG

O
R

IT
H

M
S and R

E
SE

A
R

C
H

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

A
lgebraic Pattern-E

quations

 ((A)) = A                  
           Involution

(A
 ( )) =                    

           O
cclusion

A
 {A

 B} = A
 {B}                

 P
ervasion

C
urly braces refer to any deeper intervening structure.

E
ach pattern proceeds from

 left to right by deletion of structure.
T

here is no analogy in conventional m
athem

atical technique.

Axiom
s

halting condition

boundary deletion

form
 deletion

U
seful T

heorem
s

 (A)
 {B

 (A
 N)}

 =
 (A)

 {B}            Subsum
ption

((A
 B)(A

 C))
 =

 A
 ((B)(C))      

     D
istribution

((A
 (B))(C

 (A)))
 =

 (A
 B)

 ((A)(C))   
 

       P
ivot

to m
anage structural tangles

void occlusion

reflexion

extended generation

transposition

Spencer-B
row

n:

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Boolean and Boundary Logic

T
he boundary logic “constant”:

( )
T

he boundary logic “function”:
(a)

T
he boundary logic “relation”:

(a)
b

  b
o

o
l
e
a
n

                    b
o

u
n

d
a
r

y
                      

FALSE

TRUE
(
 )

NOT a
(a)

a
 OR b

 a b
NOT (a

 OR b
)

(a b)
IF a

 THEN b
(a) b

a
 AND b

((a)(b))
a
 EQUALS b

(a b)((a)(b))

  b
o

o
l
e
a
n
                     

TRUE

FALSE 
NOT

 a

a
 AND

 b

NOT
 (a

 AND
 b

) 
NOT

 (IF
 b

 THEN
 a

)

a
 OR

 b

a
 NOT

 EQUALS
 b

object and operator 
are subsum

ed
by pattern

   d
u

a
l

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

O
ne-to-M

any M
apping

O
ne boundary form

 represents m
any different conventional logic expressions.  

A one-to-m
any m

apping is necessary for one system
 to be sim

pler.

The particular logical interpretation of a given boundary form
 is a free choice.

0 = 0
 OR

 0 = 0
 OR

 0
 OR

 0 = ...

    ( )
1NOT

 0
1 OR 0
0 OR 1 OR 0
0 NOR 0
(NOT

 0) OR 0
NOT

 (0 OR 0)
NOT

 (0 OR 0) OR (0 OR 0)
...

   ((a)(b))
a AND b
b AND a
NOT

 (NOT
 a OR NOT

 b)
NOT

 a NOR NOT
 b

NOT
 (a NAND b)

(a AND b) OR 0
NOT

 (a NAND (0 OR b)) OR 0
NOT

 (b NOR 0) OR NOT
 a OR 0

...

void



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Table of N
on-C

orrespondence 

sym
bols                     strings                     icons                   

 linear vs spatial

constants                   {0,1}                  { (
 ) }               tw

o vs one

duality                        objects                    spaces                 existence 

m
apping                   functional             structural               values vs patterns

unary operator             NOT                       none                  existence

binary operator         AND,
 OR                   contains                tw

o vs one

arity                           specific                  variary                 countable vs not

com
m

utativity            linear                      none                   existence

associativity               binary                   nesting                 non-associative

rearrangem
ent       distribution             pervasion              regroup vs construct

com
putation             rearrange                 delete                  void-equivalence

random
 valuation     50%

 TRUE              ~64.7%
 (

 )            sym
m

etric vs asym
m

etric

LoF is not Boolean. 

b
o

o
l
e
a
n

      b
o

u
n

d
a
r

y
       d

if
f
e
r

e
n

c
e 

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Proof of M
odus Ponens

 (((a)((a) b))) b
transcription

   (a)((a) b)   b
involution 

((A)) ==> A
   (a)(     )   b

pervasion
A (A B) ==> A (B)

      (     )
dominion

A ( ) ==> ( )

  (a AND (a IMPLIES b)) IMPLIES b
                                          

  (a AND    (a) b    
 ) IMPLIES b

a IMPLIES b ––> (a) b
                                       

  ((a)  ( 
 (a) b  ) 

 ) IMPLIES b
a AND X ––> ((a)(X))

                                       

( ((a)  ( 
 (a) b  ) 

 ) )      
 b

X IMPLIES b ––> (X) b

Transcribe

Reduce

Interpret
TRUE 

                  
( ) ––> TRUE

  α
, (α

  |= β)  |= β ––> ((
 (α)

 ((α)
 β)

 ))
 β

values
expressions
collections

  (a AND (a IMPLIES b)) IMPLIES b
m

odus ponens

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

V
irtual Insertion Technique

Broad Subsum
ption   (a

 b
 c)

 (a
 (d

 (b
 (c e)))) =?= (a

 b
 c)

 (a
 (d

 (b)))

(a b c) (a (d (b (c e) (a b c))))
   

insert (a b c)
(a b c) (a (d (b (c e) (    c))))

   
extract a b

(a b c) (a (d (b       (    c))))
   

subsume (c e)   
(a b c) (a (d (b              )))

   
discard (c)

O
uter form

s pervade all inner spaces.
T

heir hypothetical presence as queries can trigger structural deletions.

(a) ((a) a b)
  

insert (a)              

(a) (( ) a b)
  

extract a                 

(a)
  

occlusion
                                       

Sim
ple Subsum

ption    (a) (a b) =?= (a)
virtual form

s in red

virtual!

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

E
quivalence by Q

uery

         ((a)(b))(a (b (c)))            b (a c)          A B
         ((a)( ))(a (  (c)))            b (a c)          extract b
                 (a (  (c)))            b (a c)          occlusion
                 (a     c  )            b (a c)          involution
                                        b (a c)          extract (a c)
                     

void                                  discard b
 (a

 c)

  A
 =

 B   iff   A B = A B =             virtual extraction m
ethod

((a)(b))
 (a

 (b
 (c))) =?= b

 (a
 c)

           b (a c)          ((a)(b))(a (b (c)))          B A
           b (a c)          ((a)( ))(a (  (c)))          extract b
           b (a c)                  (a (  (c)))          occlusion
           b (a c)                  (a     c  )          involution
           b                        (a     c  )          extract (a c)
           b                                             discard (a

 c)
         ((b)                    )                       involution
         ((b) ((a)(b))(a (b (c))))                       insert A
         ((b) ((a)   )(a (b (c))))                       extract (b)
         ((b) ((a)   )(a        ))                       subsume (b

 (c))
         ((b) (      )(a        ))                       extract (a)
                     

void                                  occlusion

binate



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

1981–1988:   A
dvanced D

ecision System
s &

 Stanford U
niversity 

–  propositional theorem
 prover

–  intelligent program
 editor (sem

antic debugger for A
da)

–  behavioral query language
–  L

oF-based program
m

ing language
–  softw

are optim
ization

–  A
I inference engine

–  inference w
ith contradictions

–  asynchronous parallel com
putation (Intel H

ypercube)

A
R

T
IFIC

IA
L IN

T
E

LLIG
E

N
C

E 
P

R
O

G
R

A
M

M
IN

G

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

L
oF D

eductive E
ngines

First-order Logic
–  predicate calculus w

ith quantification
–  built-in theory of equality
–  skolem

ization, unification, dem
odulation

–  B
oolean m

inim
ization and sym

m
etry detection

–  selected dom
ain theories

C
onfigurable C

om
putation

–  partial case analysis, partial function evaluation
–  generate counter-exam

ples if possible
–  identify parallel and sequential com

ponents
–  parallel propositional logic im

plem
ented on a 16-core processor

Inconsistency M
aintenance

–  capture, isolate and use contradiction w
ithout degradation

Pure boundary logic data structures and algorithm
s.

used for code optim
ization

rather than theorem
 proving

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

E
xecutable C

ode
T

his very efficient L
ISP code im

plem
ents O

cclusion and Involution
recursively to sim

plify and evaluate logic expressed as parens form
s. 

R
eadability is achieved by renam

ing com
m

on L
ISP functions.

(instructions-to apply-atomic-deletion-reduction
  (with-any (form)
    (take-these-steps
      ((if-its-an-atom form) form)
      ((if-theres-a-ground-mark-inside-the form) nothing)
      ((if-its-a-compound form)
        (simplify 
          (the-result-of
            (the simplification-of-each-part-of-the) form)))
      ((if-its-an-atom (inside-of-the form)) form)
      ((if-theres-a-ground-mark-inside-the (inside-of-the form)) ground-mark)
      ((if-the-contents-are-compound form)
        (simplify 
          (the-container-of 
            (the-result-of
              (the simplication-of-each-part-of-the) (inside-of-the form)))))
      (otherwise (apply-atomic-deletion-reduction 
                  (to-whats-in-the-double-container-of-the form))))))

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

A
synchronous Parallel D

eduction E
ngine (1987)

parallel processors
display anim

ation

execution
traces

distinction netw
ork

reduction
    rules

logic 
input

boundary logic linear form

W
. Bricken and E. G

ullichsen (1989)  A
n Introduction to Boundary Logic w

ith the Losp D
eductive Engine, Future C

om
puting System

s 2(4), p.1-77.



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

1994–2000:   Interval R
esearch C

orporation &
 Seattle U

niversity
–  B

oolean satisfiability, B
oolean m

inim
ization

–  predicate calculus deductive engine
–  com

binational and sequential circuit optim
ization (area and delay)

–  m
apping to reconfigurable hardw

are

SE
M

IC
O

N
D

U
C

T
O

R  
O

PT
IM

IZ
A

T
IO

N

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

C
ircuit Structures in B

oundary L
ogic

abc

abcd

abcd

ab

carry
sum

(a ((b)(c)))

((b c d) ((a)(b)(c)))

((d)(a b c))

sum   = (carry (a b)) 
carry = ((a)(b))

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

D
istinction N

etw
orks

                        4-bit M
agnitude C

om
parator w

ith enables

 ((eq 1) (gt 2) (lt 3)) 

  ((1  ((j)(a (b))(b (a))(c (d))(d (c))(e (f))(f (e))(g (h))(h (g)))           ) 

   (2  ((i ((j)((g (h))((h (g))((e (f))((f (e))((c (d))(a (b)(d (c)))))))))))  ) 

   (3  ((k ((j)((h (g))((g (h))((f (e))((e (f))((d (c))(b (a)(c (d)))))))))))  )))

A distinction network (dnet) circuit propagates disconnects.

Equal

Less

Greater
ABCJK G F IH E D

fully expanded

three outputs

eleven inputs

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Structure Sharing
 ((eq 12) (gt 34) (lt 35))    -- output pins 

  ((1   ( a)               ) 
   (2   ( b)               ) 
   (3   ( c)               ) 
   (4   ( d)               ) 
   (5   ( e)               )  -- INVERTERS
   (6   ( f)               ) 
   (7   ( g)               ) 
   (8   ( h)               ) 
   (9   ( j)               ) 
   (10  (30)               ) 
   (11  (33)               ) 
   (12  (31)               ) 
   (13  (32)               ) 
   (14  (a 2)              ) 
   (15  (b 1)              ) 
   (16  (c 4)              ) 
   (17  (d 3)              )  -- NOR2 gates 
   (18  (e 6)              ) 
   (19  (f 5)              ) 
   (20  (g 8)              ) 
   (21  (h 7)              ) 
   (22  (( j)(20))         ) 
   (23  (( j)(21))         ) 
   (24  ((11)(16))         ) 
   (25  ((11)(17))         )  -- AND2 gates 
   (26  ((10)(18))         ) 
   (27  ((10)(19))         ) 
   (28  ((13)(14))         ) 
   (29  ((13)(15))         ) 
   (30  (( 9 20 21))       ) 
   (31  ((14 15 32))       )  -- OR3 gates 
   (32  ((16 17 33))       ) 
   (33  ((18 19 30))       ) 
   (34  ((i 22 24 26 28))  )  -- OR5 gates 
   (35  ((k 23 25 27 29))  )))

Technology library
{ INV, NOR2, AND2, OR3, OR5 }  fanout = 3
{(A),(A B),((A)(B)),((A B C)),((A B C D E))}

M
ultilevel circuits fanout from

 logic gates 
to share com

putational resources.

 D
istinction network form

at
     –  E

ach row
 is a cell. 

 
–  A

 cell consists of a label  
and a boundary logic form

. 
 

–  L
etters are input labels. 

 
–  N

um
bers are cell labels. 

 
–  To expand a cell, 

substitute a form
 for a label. 

 
–  T

he circuit is technology m
apped 

w
hen the form

 in each cell
  m

atches a library form
.

Fanout in represented by the num
ber 

of references to a particular dnet cell.



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

E
valuation by O

cclusion

(A
 (

 )) =
O

cclusion

E
valuation is asynchronous and strongly parallel.

Inputs are either deleted (0) or asserted as a distinction (1).

a b
a b

0

a b

disconnect a

circuit fragm
ent 

is disconnected

sufficient for 
evaluation

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

D
istinction N

etw
ork O

ptim
ization

C
om

m
unication between nodes is local with no global coordination. 

W
. Bricken (1995)  D

istinction N
etw

orks, in I. W
achsm

uth et al (eds) K
I-95 Advances in Artificial Intelligence, Springer, p.35-48.

Pervasion
A {A B} = A {B}

Involution
((A)) = A

O
cclusion

(A ( )) =
void

sufficient for 
reduction

Transform
ation is asynchronous and strongly parallel.

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Path D
eletion by Pervasion

arbitrary
logic block

R
educing reconvergence sim

plifies tim
ing.

a ( a b ) 
a (   b )

((a) ((a)(b))) 
((a) (   (b))) 
((a)      b  )

((a) { … ((a)(…)) }) 
((a) { … (   (…)) }) 
((a) { …      …   })

Exam
ple I

Exam
ple II

Exam
ple III

ab ab

ababab

aany
any

aany
any

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Technical E
D

A
 Issues

C
ircuit design industry (E

lectronic D
esign A

utom
ation)

–  400,000 engineers in U
S

–  $400 billion/year industry
–  V

L
SI design:  m

ore than 1 m
illion logic gates 

–  com
putational circuits over 50 billion transistors

–  m
em

ory units over 1 trillion transistors

V
L

SI:  V
ery L

arge Scale Integration of sem
iconductor chips

–  delay m
inim

ization and global optim
ization

–  verification and equivalence testing
–  technology m

apping to different libraries and architectures
–  sym

m
etry detection and abstraction

–  tim
ing and synchronization

–  pow
er consum

ption
–  fault tolerance
–  m

anufacturability and yield

R
esistance to change

–  existing tools are excellent
–  disruptive technologies can cost m

ore in retraining than they gain in perform
ance



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

1999–2002:   Interval R
esearch C

orporation &
 B

T
C

–  logic synthesis (area and delay)
–  technology m

apping
–  design exploration, abstraction, partitioning

C
IR

C
U

IT  D
E

SIG
N

  
G

E
N

E
R

A
T

O
R

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

C
urrent Techniques (4-bit com

parator)

 two-level logic (PLA)

m
ultiplexor logic (M

U
X)

m
ultilevel logic (ASIC)

binary decision diagram
 (BD

D)

Pattern: A
 ((B)(C))

 =>
 ((A

 B)(A
 C))

Pattern: (((A) B) (A C))
Pattern: occlusion paths

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

M
ultilevel Structural O

ptim
ization

ED
A software generated design

rem
ove redundancy

reduce reconvergence
reduce fanout 

Pattern:  ((A
 B)(A

 C)) =>
 A

 ((B)(C))

Pattern: A
 (A B)

 =>
 A

 (B)

boundary logic optim
ized design

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Technology M
apping

reduced critical tim
ing path, fanout =

 4
L

ibrary:   { INV, NOR2, NOR3, NOR4, NOR9 }
Pattern:  (A ((B)(C))) ==> (A B)(A C)

3 gate pipeline, fanin
 =

 2

specific library, fanin
 =

 2, fanout =
 3

L
ibrary:      { NOR2, OR2, NAND2, AND2, XOR2 }

Pattern: 
(A B C D) ==> (((A B)) ((C D)))

4-input look-up tables
L

ibrary:            { INV, NOR2, OR2 }
Pattern:   (A (B (C (D (E (F))))))

L
ibrary:                 { 4LUT

 }
Pattern:    (A (B (C (D (E)))))



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

D
esign for Testability

 ((eq 36) (gt 20) (lt 21)) 

  ((1   ( a)       ) 
   (2   ( b)       ) 
   (3   ( c)       ) 
   (4   ( d)       ) 

-- INVERTERS
   (5   ( e)       ) 
   (6   ( f)       ) 
   (7   ( g)       ) 
   (8   ( h)       ) 
   (9   ( j)       ) 
   (10  (12)       ) 
   (11  (13)       ) 
   (12  (a 2)      ) 
   (13  (b 1)      ) 
   (14  (c 4)      ) 

-- NOR2 gates 
   (15  (d 3)      ) 
   (16  (e 6)      ) 
   (17  (f 5)      ) 
   (18  (g 8)      ) 
   (19  (h 7)      ) 
   (20  ((i 22))   ) 

-- OR2 gates 
   (21  ((k 23))   ) 
   (22  ( 9 32)    ) 
   (23  ( 9 34)    ) 
   (24  (10 15)    ) 
   (25  (11 14)    ) 
   (26  (14 24)    ) 

-- NOR2 gates 
   (27  (15 25)    ) 
   (28  (16 31)    ) 
   (29  (16 27)    ) 
   (30  (17 29)    ) 
   (31  (17 26)    ) 
   (32  (18 35)    ) 
   (33  (18 30)    ) 
   (34  (19 33)    ) 
   (35  (19 28)    ) 
   (36  ( 9 45)    ) 
   (39  ((12 13))  ) 
   (40  ((14 15))  ) 

-- OR2 gates 
   (41  ((16 17))  ) 
   (42  ((18 19))  ) 
   (43  ((39 40))  ) 
   (44  ((41 42))  ) 
   (45  ((43 44))  )))

Technology library 
    { INV, NOR2, OR2 } fanout =

 3
    {(A),(A B),((A B))}

M
inim

al structural variance 
–  m

axim
um

 fanin
 =

 2 
–  m

axim
um

 fanout =
 3 

–  fast transistor chain
–  no reconvergence 
–  enables bypass functional logic

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

B
ehavioral A

bstraction

Functional abstraction
M

inim
ized design

Parallel abstraction
Sequential abstraction

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

V
ector A

bstraction
(((oa =17)) 
  ((!1   (@  35)  ) 
   (!2   (@ =66)  ) 
   (!3   (@ =67)  ) 
   (!4   (@ =68)  ) 
   (!5   (@ =69)  ) 
   (!6   (@ =70)  ) 
   (!7   (@ =71)  ) 
   (!8   (@ =72)  ) 
   (!9   (@ =73)  ) 
   (!10  (@ =74)  ) 
   (!11  (@ =75)  ) 
   (!12  (@ =76)  ) 
   (!13  (@ =77)  ) 
   (!14  (@ =78)  ) 
   (!15  (@ =79)  ) 
   (!16  (@ =80)  ) 
   (!V1  (@ =V2)  ) 

   (18  (( a)(q))  ) 
   (19  (( b)(q))  ) 
   (20  (( c)(q))  ) 
   (21  (( d)(q))  ) 
   (22  (( e)(q))  ) 
   (23  (( f)(q))  ) 
   (24  (( g)(q))  ) 
   (25  (( h)(q))  ) 
   (26  (( i)(q))  ) 
   (27  (( j)(q))  ) 
   (28  (( k)(q))  ) 
   (29  (( l)(q))  ) 
   (30  (( m)(q))  ) 
   (31  (( n)(q))  ) 
   (32  (( o)(q))  ) 
   (33  (( p)(q))  ) 
   (V3  ((V4)(q))  )

(=66   (((=50  !1) ((=50)( !1))))  ) 
(=67   (((=51  !2) ((=51)( !2))))  ) 
(=68   (((=52  !3) ((=52)( !3))))  ) 
(=69   (((=53  !4) ((=53)( !4))))  ) 
(=70   (((=54  !5) ((=54)( !5))))  ) 
(=71   (((=55  !6) ((=55)( !6))))  ) 
(=72   (((=56  !7) ((=56)( !7))))  ) 
(=73   (((=57  !8) ((=57)( !8))))  ) 
(=74   (((=58  !9) ((=58)( !9))))  ) 
(=75   (((=59 !10) ((=59)(!10))))  ) 
(=76   (((=60 !11) ((=60)(!11))))  ) 
(=77   (((=61 !12) ((=61)(!12))))  ) 
(=78   (((=62 !13) ((=62)(!13))))  ) 
(=79   (((=63 !14) ((=63)(!14))))  ) 
(=80   (((=64 !15) ((=64)(!15))))  )   
(=17   (((=65    ) ((=65)(   ))))  ))) 
(=V2s  (((=V6 !V1) ((=V6)(!V1))))  )

(35  (((18)( !1)) (36  (18  !1)))  ) 
(36  (((19)( !2)) (37  (19  !2)))  ) 
(37  (((20)( !3)) (38  (20  !3)))  ) 
(38  (((21)( !4)) (39  (21  !4)))  ) 
(39  (((22)( !5)) (40  (22  !5)))  ) 
(40  (((23)( !6)) (41  (23  !6)))  ) 
(41  (((24)( !7)) (42  (24  !7)))  ) 
(42  (((25)( !8)) (43  (25  !8)))  ) 
(43  (((26)( !9)) (44  (26  !9)))  ) 
(44  (((27)(!10)) (45  (27 !10)))  ) 
(45  (((28)(!11)) (46  (28 !11)))  ) 
(46  (((29)(!12)) (47  (29 !12)))  ) 
(47  (((30)(!13)) (48  (30 !13)))  ) 
(48  (((31)(!14)) (49  (31 !14)))  ) 
(49  (((32)(!15)) (82  (32 !15)))  ) 
(82  (((33)(!16)) (( ) (33 !16)))  ) 
(V5  (((V3)(!V1)) (V5s (V3 !V1)))  ) 

(=50  (((18 36) ((18)(36))))   ) 
(=51  (((19 37) ((19)(37))))   ) 
(=52  (((20 38) ((20)(38))))   ) 
(=53  (((21 39) ((21)(39))))   ) 
(=54  (((22 40) ((22)(40))))   ) 
(=55  (((23 41) ((23)(41))))   ) 
(=56  (((24 42) ((24)(42))))   ) 
(=57  (((25 43) ((25)(43))))   ) 
(=58  (((26 44) ((26)(44))))   ) 
(=59  (((27 45) ((27)(45))))   ) 
(=60  (((28 46) ((28)(46))))   ) 
(=61  (((29 47) ((29)(47))))   ) 
(=62  (((30 48) ((30)(48))))   ) 
(=63  (((31 49) ((31)(49))))   ) 
(=64  (((32 82) ((32)(82))))   ) 
(=65  (((33 !16)((33)(!16))))  ) 
(=V6  (((V3 V5s)((V3)(V5s))))  )

((!V1   (@ =V2)                       ) 
 (V3    ((V4)(q))                     ) 
 (V5    (((V3)(!V1)) (V5s (V3 !V1)))  ) 
 (=V6   (((V3 V5s)((V3)(V5s))))       ) 
 (=V2s  (((=V6 !V1)((=V6)(!V1))))     ))

Vectorized form

Pseudo-circuit

8-bit sequential m
ultiplier

com
m

on 
patterns 
in red

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

2002–2004:   U
nary C

om
puters &

 B
T

C
–  dynam

ically reconfigurable hardw
are design

–  design abstraction, partitioning, place&
route

R
E

C
O

N
FIG

U
R

A
B

LE  
H

A
R

D
W

A
R

E D
E

SIG
N



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

L
ogic B

lock A
rchitecture

2004 w
ire technology:  130 µm

2004 block area:       16,000 µm
2  (.016 m

m
2)

2004 gate density:      12,000 gates/m
m

2

one block = 200 A
SIC gates

one cell
~2.5 A

SIC gates 

cell interconnect

registers
block output

logic cells

block input

2019 w
ire technology:  7 µm

 
2019 block area:          30 µm

2 

2019 gate density: 6,000,000 gates/m
m

2

E
ach block coordinates 80 cells as 
a single unified tim

ed logic elem
ent.

E
ach cell can be dynam

ically reconfigured 
to the functionality of about 
2.5 conventional logic gates.

H
undreds of conventional circuits 

expressed as dnets w
ere statistically 

analyzed for com
m

on patterns of distinctions.

C
ells are designed to cover dnet patterns.

hierarchical pipelined m
ultilevel logic

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

Place and R
oute 

5-bit sum
 output

carry output

carry input
tw

o 5-bit inputs
labels represent cell 

configurations

5-bit adder

O
ptim

ization, layout and routing generated by applying
sim

ple boundary pattern transform
ations.

one block is 
equivalent to ~200 
synchronized logic 

gates
signal flow

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

R
econfigurable C

hip A
rchitecture

2004 chip:         32 block-neighborhoods provide 100,000 logic gates
2019 chip:         10,000 neighborhoods provide 30,000,000 logic gates

one block = 200 A
SIC gates

one block-neighborhood = 3,200 A
SIC gates

2019 technology is 300 tim
es sm

aller

C
o-designed softw

are specification and 
hardw

are layout using distinction patterns

Fine-grain control of logic/routing trade-offs

Synchronized tim
ing elim

inates tim
ing analysis

       2004 delay: 1.8 ns per block, any logic
                        2.7 ns across chip, any location

R
egular cell structure for ease of  fabrication

chip area: 7
 x 7

 m
m

 =  49
 m

m
2

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

1997-2005:   Interval R
esearch C

orporation &
 U

nary C
om

puters
exotic architectures
      –  bit-stream

 circuit sim
ulator

      –  boundary logic R
ISC

 instruction set
                          –  inverting bar architecture

      –  reconfigurable occlusion array
      –  reconfigurable com

putation m
esh

IN
N

O
VA

T
IV

E  
H

A
R

D
W

A
R

E D
E

SIG
N

 
(alternative dnet architectures)



C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

R
econfigurable O

cclusion A
rray   

D
nets are im

plem
ented as a spatial array of distinctions.

W
iring is virtual. C

onnectivity is a threaded array of disconnection locations.
C

hange is virtual. D
isconnection is recorded by m

arking a m
em

ory cell.
Tim

ing is virtual. Term
inates w

hen all output distinctions are m
arked.

4-bit m
agnitude com

parator

(A
 (

 ))
 =

O
cclusion

like a Pachinko 
m

achine

unary rather 
than binary 

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

R
econfigurable C

om
putational M

esh 

optim
ized 4-bit com

parator

W
RITE-Data

Row
-A

CTIVE=1

REA
D/not-W

RITE

D
R

A
M

 crosspoint
    –  standard m

em
ory cell

    –  W
R

IT
E to configure circuit

    –  R
E

A
D

 to run circuit

U
se m

em
ory architecture for com

putation.

T
he spatial configuration of m

em
ory bits is the circuit.

N
ew circuits are built as quickly as m

em
ory W

RIT
E 

and run as fast as m
em

ory READ.

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. C

onclusion

W
e have been developing the theory and application of 

boundary m
athem

atics for tw
o decades.  

T
he extent to w

hich boundary techniques differ from
 w

ell 
know

n form
s of m

athem
atics is both a m

ajor 
political challenge and a significant technical advantage.

T
his presentation has em

phasized boundary logic.  
T

here are equally interesting developm
ents in 

im
aginary and re-entrant boundary form

s 
and in boundary num

erics.

C
opyright ©

 2019  W
illiam

 M
. B

ricken.  A
ll rights reserved. 

T
H

A
N

K
 Y

O
U

!
w

illiam
@

iconicm
ath.com

recent work:   IC
O

N
IC A

R
IT

H
M

E
T

IC

N
E

W
 2018                  N

E
W

 2019            C
O

M
IN

G 2020

sim
ple

sensual
postsym

bolic

W
illiam

 Bricken, Ph.D
.

LU
M

E II

R
A

C
D

P
S

Q

sim
ple

sensual
postsym

bolic

W
illiam

 Bricken, Ph.D
.

LU
M

E II


