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All fundamental questions can be settled 
in a specifically mathematical way, 

without having to rack one’s brain about subtle logical dilemmas.
— Paul Bernays (1921)

Preface

When this project began, it was envisioned as an application of boundary 
techniques to numeric arithmetic, to be followed by a report on my twenty 
years of work with boundary logic. I thought that arithmetic would be a 
friendlier and more familiar introduction to iconic thinking than would 
logic. As the chapters of Iconic Arithmetic accumulated, it became clear 
that there were three relatively separable areas: basic iconic arithmetic, 
historical grounding and the exotics of imaginary and infinite forms. Each 
of these areas has taken a separate volume to explore, primarily to make the 
technical case for iconic math both structurally and computationally, and 
to provide a thorough description of historical modes of thought. Several 
major themes have emerged:

Comparative Theme: The concepts of elementary mathematics have evolved 
over millenia based on what seemed to be good ideas at the time. However 
math is designed and different designs lead to different ways of thinking 
about mathematics, about structure and about the world. This theme grew 
out of the recent evolution of computer programming languages.

Computational Theme: If mathematics were to be measured by how it 
is used, then almost all math is silicon computation. With the introduction 
of metamathematical concepts such as effective procedures, algorithmic 
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decidability, finite resources and ubiquitous computation the focus of formal 
thinking has shifted from valid proof to computational feasibility. Wolfram’s 
Mathematica has demonstrated that symbol processing is no longer within 
the domain of humans. This perspective reflects my choice of profession as 
a computer scientist.

Perceptual Theme: Many aspects of math are visual and experiential. The 
utter dominance of symbolic forms of math narrows our thinking and dis-
enfranchises the majority of folks who are exposed to elementary math 
education. This theme grew out of my study of Spencer Brown’s Laws of 
Form and out of Francisco Varela’s approach to the embodiment of concept, 
as well as dozens of years teaching mathematical ideas.

Discovery Theme: Iconic arithmetic incorporates some fascinating design 
features, such as the pervasiveness of void, the dual nature of boundaries, the 
structural freedom of multiple dimensions, the natural parallelism, three 
elegant yet comprehensive axioms, and the surprising new methods of trans-
formation. These features are reflected in new ways to think about structure 
and about reality. This theme was inpired by the work of Louis Kauffman and 
is a result of several decades of implementing formal iconic software tools.

Perhaps needless to say, I also learn by writing.

I awoke one morning in 2015 to realize that my training in formal systems circa 
1980 was, to say the least, antiquated. In the twenty-first century I was using 
a style of mathematical thinking from the early twentieth century, ignoring 
the fundamental evolution of mathematical perspective due to Grothendieck 
(algebraic geometry), Baez (n-categories), Chaitin (undecidability), Wolfram 
(universal computation) and others. I began to see that elementary logic and 
arithmetic are not determined, secure or natural. The iconic tools I had been 
working with for years have just as valid a claim to mathematical foundations 
as do the early explorations that led us today into set theory, Boolean logic and 
functional thinking. The bulk of the mathematical community still bases their 
formal thinking about numbers on Peano’s axioms, while the modern evolution 
in mathematical thought appears to have taken place in the more rarefied 
atmosphere of the unification of advanced abstraction. Short of returning to 
school, I tried to leverage my antediluvian education to build what appear to 
be quite different systems of elementary mathematical thinking. 
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Volume I of this series describes two alternative ways to conceptualize 
numbers. Ensemble arithmetic mirrors the evolution of numeric math for 
thousands of years prior to the symbolic dominance that took hold less than 
two hundred years ago. James algebra embodies iconic structure to open 
new perspectives on elementary arithmetic by reformulating the “laws” 
of algebra. And there are plenty of surprises, especially the unexpected 
appearance of imaginary and infinite forms, both of which constitute the 
content of Volume III.

This Volume II is focused on comparative axiomatics, comparing James 
algebra to our current formal foundations for the arithmetic of numbers. 
Three simple structural James axioms ground iconic transformations 
throughout the three volumes. From a computational perspective nothing is 
remote, complicated or indirect, given the narrow focus on elementary math. 

Here we explore the potential of a postsymbolic math that injects our current 
formal foundations with multiple heresies while still respecting the formality 
of mathematics itself. To justify the imposition of new iconic forms and trans-
forms, I’ve described and compared the approaches of several technically 
different fields including numeric arithmetic and algebra, predicate logic, 
set theory, computational pattern-matching, educational methods and iconic 
boundary mathematics. Not only is there no agreement across fields about 
the basic structures of arithmetic, there is also no communality across tools 
and objectives. Iconic math adds yet more enrichment through diversity.

Volume II feels quite different than Volume I, with deeper, more historical 
questions at the foundations of the current philosophies of mathematics. 
This is a necessary volume to address the many technical details about the 
structures, assumptions and thought processes that we now expect grade 
school teachers and students to grasp intuitively.

In reading the text, backward reference to Chapters 1 through 15 refer to 
Volume I. All structural necessities are included in Figure 16-1 of Chapter 16. 
Forward reference to Chapter 31 through 45 refer to Volume III. Figures 30-1 
through 30-3 include all new structural forms introduced in Volume III. All 
references to online content have been verified as accessible during the latter 
half of 2018. The iconicmath.com website is the nexus for the content in these 
volumes and for forthcoming volumes focused more on computational logic.
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The narrow side columns on each page hold handy illustrations and remind-
ers in support of the text. In the case of formal transformation sequences, 
the rules being applied are listed line-by-line in the margins.

Aside from delimiting brackets that serve as unified iconic objects/operators, 
there are a few symbolic characters that have unusual roles.

I’ve used typographic delimiters, ( ), [ ], < > and others rather than Spencer 
Brown’s spatial mark,      , for easier typography and to make available 
several different representations for types of spatial containers.

A fixed width Monaco font identifies mathematical forms and functions, 
while the linguistic content is printed in Cochin font.

The finger  ☞  indicates a change in formal system, usually moving between 
iconic James forms and conventional string expressions.

The numeric unit represented by a round-bracket has two forms, ( ) and o.

The arbitrary James base is represented by #.

The quasi-token void is meant not to exist.

A frame is the James structure (A [B]) with A the frame type and B the 
frame contents.

The opening quote by Paul Bernays is a summary description of the goals of 
Hilbert’s program to convert mathematics into a purely structural discipline. 
That indeed is the approach taken herein, with the fundamental difference 
that structure is illustrated by iconic images rather than expressed by typo-
graphic strings of symbols. 

I do hope you too will enjoy this exploration of iconic form and postsymbolic 
thinking.
       william bricken
       Snohomish Washington
      March 8, 2019
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The first two chapters of Volume I retrace the earli-
est recorded evidence that homo sapiens engaged in 

activities to answer the question “How many?”. The system 
in use in antiquity was tally arithmetic: beads and knots 
and marks that record a one-to-one correspondence pre-
sumably with physical objects. As tallies accumulated they 
were gathered into groups. Putting tallies together defines 
addition. Grouping tallies defines multiplication. Hilbert, 
Frege, Peano and other founders of modern formal arithme-
tic at the turn of the twentieth century had tally arithmetic 
firmly in mind as the intuitively obvious foundation of 
numbers. Ensemble arithmetic extends this belief with the 
iconic techniques introduced by Charles Sanders Peirce in 
the 1890s and by George Spencer Brown in the 1960s.2 

The second formal system in Volume I is James alge-
bra, originally developed by Jeffrey James and myself 
in the  early 1990s at the University of Washington, and 
inspired by the work of Louis Kauffman at the University 
of Illinois at Chicago. We migrated our approach to iconic 
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We have allowed only one kind of relation...
a cross is said to contain what is on its inside and 

not to contain what is not on its inside.1
— George Spencer Brown (1969)
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representation and computation to Interval Research 
Corporation3 during that decade, to implement under the 
direction of Richard Shoup several boundary mathematics 
software and hardware systems. The Natural Computing 
Project’s mission was simple: If you could redesign com-
putation from scratch, with no concern for backward 
compatibility, what would you do? These volumes are a 
relatively small yet foundational part of the answer.

Volume I explores the nature of a unit, how pattern vari-
ables support transformation, and the iconic path that 
connects accumulation with counting, addition, multiplica-
tion and exponentiation, the bread-and-butter of numeric 
operations. Two complementary boundaries define these 
operations. One more reflective boundary gives us all of 
the inverse operations. For completeness Volume I shows 
how polynomials, real numbers, fractions and bases can 
all be understood as patterns of containment. The three 
James boundaries unify the diversity of numeric expres-
sions as patterns that make no direct reference to numeric 
concepts. Volume I then shows how these patterns are 
postsymbolic, their iconic form can be rendered in a wide 
variety of spatial and experiential dialects.

We’ll now cross into Volume II, to compare James algebra 
to the foundational theories of formal arithmetic devel-
oped during the early twentieth century. How can a new 
formal structure, an iconic structure, come into being for 
something we know so well? How can arithmetic not be 
the arithmetic that we learned in grade school?  History 
suggests that our understanding of arithmetic is undergo-
ing continuous evolution. Formalization was a first rather 
than a last step in the definition of numeric structure.

16.1  James Algebra
Figure 16-1 is a summary of the structural basis of James 
algebra developed in Volume I. Transformation equations 
have names for application in either direction. All forms 

round     ( )
square   [ ]
angle     < >
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Axioms and Theorems of James Algebra

Ground Interpretations
  o = ( )  ☞   1        (o)  ☞  #

   < >  ☞   0         <o>  ☞ –1

   [ ]  ☞  –∞       <[ ]> ☞ ∞ (volume III)

Unit Definitions
    ( )  ≠  void      existence

   ( ) ( )  ≠  ( )      unit accumulation

   [ ] [ ]  ⇒ [ ]      unification

   [ ]<[ ]> ⇒  indeterminate    indeterminacy (volume III)

Pattern Axioms
   ([A]) = [(A)] = A     inversion      enfold/clarify

   (A [B C]) = (A [B]) (A [C])  arrangement   collect/disperse

    A <A> = void      reflection     create/cancel

Interpretative Axiom      (volume III)
   (<[ ]>) = <[ ]> = [<[ ]>]   infinite interpretation

Theorems
   ( ) <( )> = void      unit reflection  create/cancel

   ([ ]) = [( )] =  void    void inversion  enfold/clarify

   (A [ ]) = void      dominion     emit/absorb

    A = ([A][o])       indication     unmark/mark

    A..N..A  = ([A][o..N..o])   replication     replicate/tally

   <<A>>  =  A       involution     wrap/unwrap

   <A><B>  = <A B>     separation     split/join

   <A <B>> = <A> B     reaction       react/react

   (A  [<B>] ) = <(A  [B] )>  
promotion     demote/promote

   (A <[<B>]>) = <(A <[B]>)>

Figure 16-1:  Summary of definitions, axioms and theorems
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are represented in a minimal iconic language of typo-
graphic delimiters, with some exceptions explained more 
thoroughly in Volume I. Within James algebra

— The numeric unit has both a boundary form, 
( ), and a single character abbreviation, o.

— The Replication Theorem is generalized to N 
replications by the composite symbol ..N.. . 
N is finite, although there is no implication that 
N is a natural number. 

As metalanguage to straddle the chasm between iconic 
and symbolic languages,

— The interpretation finger, ☞, indicates when 
we have changed formal systems.

— The arbitrary base made specific by interpretation 
is symbolized by #.

— The absence of a form and the pervasive space 
underneath forms is brought to awareness by 
the virtual indicator void.

While respecting the structural constraints of formal 
systems, common arithmetic and its algebra can be fully 
described within James algebra by the Accumulation 
Principle and three structural axioms that are analogous 
to the conventional operations of

— additive inverse    Reflection
— functional inverse  Inversion
— distribution    Arrangement

The Inversion and Arrangement axioms specify the inter-
action of round-brackets and square-brackets. They are 
sufficient for addition, multiplication and exponentiation. 
Reflection provides the definition of the angle-bracket, 
and is necessary to establish the Dominion theorem. 
Reflection provides the inverse operations, Dominion 
provides the behavior of conventional 0. A Composition 
Principle governs construction and deconstruction of 
James forms and defines structural identity.

accumulation
• • ≠ •
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Numbers, and how they work, arise from ignoring dif-
ferences within a vast panoply of structural uniqueness 
in three specific iconic ways.

— No ambiguity: Forms participate only in 
sameness or in difference.

— Void-equivalence: Two axioms identify 
structure that has no meaning.

— Structural variety: One axiom, Arrangement, 
generates the diversity of structures that look 
different but are not different.

A few structural theorems have been identified as useful, 
patterns that occur sufficiently often that we deem it con-
venient to provide them with a name. Thus far theorems 
have served only two purposes: to help to articulate how 
accumulation works, and to juggle around the structural 
location of angle-brackets. Two theorems, Indication 
and Replication, manage the generation and collection 
of replicated structure and help to explain the process 
of counting. The four theorems for angle-brackets are 
quite useful for transforming reflected forms, however 
only Promotion is essential. Arrangement and Promotion 
are the only patterns that rearrange containment struc-
ture. Promotion moves angle-brackets through inversion 
frames. Conversely, angle-brackets that cannot be pro-
moted indicate sites of structural complexity. All other 
patterns create and delete structure. Form that can be 
arbitrarily deleted cannot impact fundamental structural 
variety, nor can its interpretation impact numeric value.

As indicated in the Figure 16-1, Volume III introduces 
one more unit definition and one more interpretative 
axiom. These are sufficient to organize the diversity of 
non-numeric forms, those forms that contain an empty 
square-bracket. Indeterminacy and Infinite Interpretation 
are postponed until infinite expressions and the excep-
tions they visit upon conventional arithmetic can be more 
thoroughly explored in Chapters 41 and 42.4
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Concept and Design
Iconic arithmetic addresses both arithmetic and algebra. 
Arithmetic deals with specifics, how empty boundar-
ies work together. Algebra deals with generalities. An 
algebraic pattern-variable stands in place of any form. 
What web of interrelations between arbitrary forms do 
the three James axioms induce? Of course, we have the 
freedom to nominate whatever structural relations we 
are interested in. However there are many, shall we say, 
meta-constraints that not only define what we mean by 
a formal system but also limit the kinds of relationships 
that we may choose. 

A primary design decision in James algebra is to limit 
forms to the physical reality of containment, augmented 
by an ability to produce replicas of labels. We cast our 
anchor out onto the shore of constructibility in the 
physical world. This decision is both a preference and a 
discipline, based on a belief that school children will be 
able to understand what they can touch. This decision 
immediately separates our exploration from what many 
would consider to be mathematics.

The James axioms were not selected out-of-the-blue to 
define some forms that we would like to be equivalent. 
Rather the form of the axioms themselves comes with 
intention. A belief that guides the entire algebraic explo-
ration is that void can have no relationships of any kind, 
contrary to symbolic concepts like zero, or the empty set, 
or logical FALSE. Our belief that void has no structure pays 
immediate dividends. We can simplify some structural 
consequences by ignoring them. Void-equivalence is a 
powerful ally in keeping it simple. 

A second guiding belief is that forms are unique precisely 
because they are not other forms. Axioms create rela-
tively small groups of forms that we can consider to be the 
same, and what is left outside of equality is uniqueness. It 

iconic existence
is

physical existence

nothing
has no

structure

an arbitrary form
A

a specific form
(( )( )) 
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order to respect the uniqueness of forms we have elected 
to believe that forms interact only with their container, and 
with nothing else. When we put an orange into the basket 
with an apple, we choose to believe that the orange does 
not change the apple although it does change the basket 
by increasing its load.

To distinguish between numeric difference and conceptual 
uniqueness, we’ve incorporated the cognitive concept of 
distinction to join them both together. A boundary is a dis-
tinction, nothing more. It creates both inside and outside, 
two convenient concepts that allow us to localize differ-
ences. Axioms are choices to ignore differences, nothing 
more. By choosing to ignore just three kinds of difference 
(Involution, Arrangement and Reflection) we find our-
selves able to identify within what is left that which our 
culture recognizes as the numbers of arithmetic.

16.2  Iconic Math
In this volume we return to the foundations of arithmetic 
developed over a century ago, to compare the metamath-
ematical foundations of David Hilbert and his cohort to 
the perspectives and thinking induced by iconic form. We 
lurch into postsymbolism and find it necessary to abandon 
the comforts of set theory, logic and functions. And in the 
process we accomplish one of the primary goals of this 
work: a proof of principle, if you will, that our universally 
accepted way of thinking about numbers is an option, a 
temporal social decision not necessarily blessed with any 
absolute understanding of the nature of numeric thinking 
itself. Iconic arithmetic thus provides a path for numerics 
to follow logic into modernization from absolute Truth 
to relative truths. 

A central idea that we are exploring is at the core of iconic 
notation: a representation resembles what it means. Boldly, 
we are reuniting human perception with the meaning of 

forms
are

independent
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what we write down. The purely symbolic approach of 
predicate calculus cannot call upon the obvious: 

Look, ( ) exists. Look, it is empty. 

In symbolic notation, we must develop a non-intuitive 
language just to assert that we have elected to begin by 
drawing a distinction.

Utter Simplicity
Although all results are formal, none of the three volumes 
on James algebra have a specifically mathematical style. 
There is little attempt to organize by definition, theorem 
and proof or to connect syntax to semantics. However, 
the philosophical commitment to remain utterly simple 
has resulted in two innovations. The first is that the use 
of iconic representation itself greatly simplifies the con-
ceptual structure of numeric arithmetic and algebra. The 
second is that the consequent iconic conceptual structure 
greatly simplifies what would be considered to be alge-
braic computation and proof. The cost, which might not 
be surprising, is that iconic arithmetic throws us into 
unfamiliar territory. The classical styles of numeric cal-
culation and the classical theorems of number theory are 
not directly motivated by the iconic foundation. Even 
the group theoretic foundations of modern algebra are 
abandoned. By looking in a pictorial direction we are able 
to see different facets of the mathematical enterprise. We 
are thus trespassing not only into Number, but also into 
the structure of elementary mathematics itself. 

Mathematics of Mathematics
Metamathematics is about how mathematics works. 
What are the foundations of math? What are the essential 
principles? What can we believe? This entire volume is, 
in essence, an inquiry into the metamathematics of the 
arithmetic of numbers. The computational approach to 
mathematics is a variety of philosophy. The mathematical 

iconic
thinking
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philosophies developed over one hundred years ago are 
being eclipsed by contemporary developments in both 
abstraction and computation. Symbolic mathematics 
now means mathematics performed by general purpose 
computational software such as Mathematica, not the 
kind of symbol juggling done by students in algebra class 
nor the symbolic metatheory envisioned by Hilbert. How 
should math be made accessible to humans, particularly 
to younger students? What is the scope of mathematical 
philosophy? Is it the historical thoughts of great minds, 
or perhaps very modern approaches that garner the 
Fields medal (the Nobel prize for mathematical accom-
plishment), or is it the foundational beliefs upon which 
mathematics rests, or possibly what practicing mathe-
maticians actually do? Is there room in the philosophy 
of mathematics for what we teach to children? Is there 
sufficient tolerance to express formal concepts in multiple 
spatial-temporal dimensions?

Aesthetics
With boundary math we are attempting to maintain the 
aesthetic values of formal systems. A benefit of iconic 
containment is that spatial boundaries permit relations 
to be exhibited as structure rather than abstracted as 
symbols or imagined as concepts. Another benefit is that 
iconic form provides sufficient compositional structure to 
support formal systems of great simplicity and wide-rang-
ing power. 

Scientific success is often associated with the aesthetic 
value of simplicity. Mathematics too values simplicity, in 
fact you might say that the goal of mathematics is to sim-
plify. Poincaré said “Mathematics is the art of giving the 
same name to different things”.5 And certainly abstrac-
tion itself is a technique to render the complex simple.

The philosophical infrastructure of abstraction, however, 
is not simple. For example, language cleaves our unified 

Henri Poincaré
1854–1912
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experience of wholeness into ambiguous and fabricated 
partitions that lack empirical existence. 

To describe is to make complex. 

We can, alternatively, perceive images as wholes. 
Experience is not as chunky as the words we use to 
describe it. Experience has no syntax.

Naming physical containers as a ground for semantics is  
only a convenience used to bridge the gap from mathe-
matical abstraction to physical experience. We could just 
as easily name maps and territories, or a partial order-
ing structure, or terminating function calls in a software 
program. These linguistic anchors are a convenience; in 
the final analysis we must recognize Wittgenstein’s main 
point, that mathematics is devoid of reference and meaning.

Iconic containment does not require the objects and oper-
ations that define numeric arithmetic. Everything instead 
is patterns of containment. Over the last two hundred 
years the primary candidate for an intuitive founda-
tion for mathematics has been the arithmetic of whole 
numbers. James algebra can be interpreted as numeric 
arithmetic. The three James axioms themselves thus pro-
vide an alternative intuitive foundation, a simple visual 
approach to understanding that lacks only familiarity.

It is not a necessity that a new formal approach be 
instantly familiar, but it should be easy to follow and easy 
to learn. For that reason, the proofs (called demonstra-
tions) of each new structural idea in these volumes have 
been overtly recorded with the names of transformations 
in the margins. Making the steps in each demonstration 
explicit accomplishes three important goals.

1) The demonstrations show that the three pat-
tern-transformation axioms are indeed simple and 
powerful. Although we have appended a dozen  
theorems, these theorems themselves bundle only a 

10

Chapter 16



few proof steps. None are abstract or difficult. All 
are simple structural shortcuts.

2) There is a clear grounding in physicality: seman-
tics consists only of putting labelled things into 
containers. The arithmetic of numbers is relegated 
to interpretation of containment structures. 

3) Although it has evolved to be useful, our current 
number system is clumsy and difficult to use, as are 
the conceptual structures engendered by symbolic 
numbers. The demonstrations illustrate a conceptual 
approach, a way of thinking and a new method of 
organizing numeric structure built on one numeric 
concept, that of accumulation, and three transforma-
tion actions: Arrangement, Inversion and Reflection.

A New Perspective
We are exploring the James form to see if it sheds light 
upon the complexity of the arithmetic that our global 
culture has embraced. The goal is not to generate new 
mathematical theorems, this exploration is about founda-
tions rather than elaborations. The intention is to explore 
a radically different conceptualization of arithmetic. This 
volume examines the relationships between iconic form 
and foundational mathematics circa 1900, well before 
Mac Lane, Grothendieck, Lawvere and others essentially 
refocused abstract mathematics to include the structure 
of transformation processes. 

The symbolic perspective is that a number is what it 
does.6 The iconic perspective is that a number is what it 
looks like. James algebra is a new method of exposing 
the behavior of arithmetic, not just by showing differ-
ent conceptual pathways to understanding what we 
already know but by showing a different conceptual 
model of numeric behavior itself. Our modern under-
standing of unified abstraction (algebraic geometry, 
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non-commutative algebras) is constructed on top of 
existing foundations, elaborations that have led to the 
evolving conviction that apparently different maths have 
the same deep structure, similar to Chomsky’s notion 
of deep linguistic structure that allows the creation of 
thousands of indigenous languages7 while providing a 
common cognitive infrastructure for all. Iconic math does 
not necessarily shed more light on the deep structure 
of mathematical conceptualization, rather it shifts to a 
different sensory modality, not linguistic but experiential, 
not only written and spoken but also seen and touched. 

The concept of equality has also greatly expanded over the 
twentieth century due to the influence of category theory. 
Functions are maps between sets of objects. Category 
theory considers how these maps work. When maps are 
equivalent, they are isomorphic. Alternatively, within 
void-based thinking equality means non-existence.

To summarize, Figure 16-2 lists several of the changes 
in our conception of number that are embodied in James 
algebra. The figure includes a name and a short descrip-
tion for each concept, although it is the fusion of these 
conceptual fragments that forms a descriptive whole. The 
figure also includes a rough visual comparison of iconic 
form to symbolic expression. In the chapters that follow 
each of these new perspectives is compared to current 
ideas about number. The particular differences in the 
figure are characteristic of but certainly not definitive 
of iconic math in general.

16.3  Declaration of Independence
According to Plato’s metaphysics, mathematics is the 
study of eternal and unchanging abstract Forms while 
science is an uncertain and changeable perspective about 
the world of mere becoming. Plato’s view on the relative 
standing of mathematics and science is unambiguous: 
mathematics is the highest form of knowledge, science 
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iconic/symbolic            [ ] ☞ log
      pictures rather than words

distinction               ≠ ☞ =
      difference rather than equality

containment       ([2][3]) ☞ 2 x 3
      numeric forms are nested boundaries 

object/process          (2 3) ☞ n2 x n3
      objects are processes and vice versa

no zero              void ☞ 0
      eliminated in favor of pure absence

void-equivalent forms      ([2][ ]) ☞ 2 x 0
      some forms are illusions without impact or meaning

transformation        〘A B E〙 ☞ B+C ⇒ A+C
      patterns change by rule-based substitution

composition        A  ⇒ A o ☞ n ⇒ n+1
      construction of forms replaces induction

unified inverse       (<[<3>]>) ☞ 1 ÷ –3
      inverse functions are one boundary type 

arbitrary base             (2) ☞ n2
      forms are independent of a numeric base 

numeric and non-numeric         ([ ]) ☞ n–∞
      forms mix numeric with non-numeric concepts

no sets, no logic, no functions        A ☞ ¬(A = {A})
      conventional foundations are not incorporated

parallelism          2 3 4 ☞ (2+3)+4
      forms are independent and transform in parallel

rigorously finite        o..n..o ☞ 1+..n..+1
       all forms and processes are bounded

Figure 16-2:  Comparison of concepts

concept       description            example iconic ☞ symbolic
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is mere opinion.8 Math historian Morris Kline recounts 
how, as a consequence of Plato’s opinion, “mathematics 
became the substance of scientific theories.”9 By the 
mid-nineteenth century, however, mathematics matured 
beyond its applications to the Earth, to re-inhabit Plato’s 
purely abstract realm. Mathematical theories grew with 
no direct (or indirect) physical interpretation. Citing 
the rise of negative numbers, complex numbers, n-di-
mensional spaces and non-commutative algebras, Kline 
remarks that “mathematics was progressing beyond con-
cepts suggested by experience.”10

Since mathematics itself is purely virtual and does not 
necessarily connect to worldly objects or to concrete 
experiences, we can say that math is pure abstract dis-
tinction. Mathematician Michal Walicki:  “Number is 
complete ability to ignore all differences in content.”11 
Mathematics has been transformed from a overt media-
tion between description and reality to a covert contract 
between cognition and further cognition. This transi-
tion laid the groundwork for Hilbert’s truly outrageous 
proposition that mathematics should be sufficient to jus-
tify itself without reliance upon any other discipline or 
grounding. This is in marked contrast to the perspective 
of working mathematician Verena Huber-Dyson: “The 
positive integers are mental constructs. They are tools 
shaped by the use they are intended for.”12

Symbolic Algebra
The techniques of conventional algebra grew out of the 
study of polynomial expressions over seven centuries ago. 
Its techniques are particularly well adapted for polynomials, 
as is the now universal representation of digital numbers. 
Our interpretation of James algebra does not even have 
special containers that represent addition or multiplication. 
Its fundamental disconnection from polynomials provides 
new perspectives on the structure of our number system. 

polynomial 347:
   (3 x 102) +
   (4 x 101) +
   (7 x 100) 
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Algebraic equations rest upon an audacious extension of 
notation and language: we can choose an arbitrary symbol, 
in many cases x, to stand in place of both “everything” 
and what we do not know. Literal symbolism, in his-
torian John Derbyshire’s words “the systematic use of 
letters to stand for numbers”13, is a relatively new math-
ematical invention introduced by Descartes (and others) 
in the mid-seventeenth century. Prior, mathematical 
problems were largely written in words as were mathe-
matical expressions. The idea of abstraction itself came 
slowly. Before the innovations introduced by Descartes, 
mathematics was about concrete relations and concrete 
geometrical figures. Descartes’ innovation is still in use 
today. It “inspired Leibniz’s dream of a symbolism for all 
human thought”14, what today has become digital con-
vergence. Derbyshire observes,

When we compare Descartes’ mathematical demon-
strations with the wordy expositions of earlier 
algebraists, we see that a good literal symbolism 
really does relieve the imagination [Leibniz’s words], 
reducing complex high-level thought processes to 
some easily mastered manipulation of symbols.15

Throughout the next two centuries, until the invention of 
group theory, algebra was universal arithmetic, manip-
ulation of relations between numbers using symbols. It 
took until the mid-nineteenth century for generalization 
to be introduced. At the time mathematician Augustus 
DeMorgan explained:

The formation of symbolic algebra itself is a sepa-
ration of the essential conditions of operation from 
the non-essential: the rejection of all meaning over 
and above the points of meaning on which transfor-
mations depend.16

Here DeMorgan identifies, in modern terms, morphisms 
between numbers, geometry and trigonometry, noting 

Augustus DeMorgan
1806–1871
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that “many different sets of meanings may, when attached 
to the symbols, make the rules necessary consequences.”17 

And with James algebra, we have done likewise. The 
axioms suffice to define an abstract formal system that 
stands alone. To avoid abstraction, for the purposes 
herein, iconic forms are mapped to numeric expressions. 
To provide meaning James algebra itself has a concrete 
mapping to nested physical containers. Thus symbolic 
abstraction can be replaced by material representation 
without losing the abstract power of an algebra. In the 
late nineteenth century founder Richard Dedekind pur-
sued axiomatization of algebra, converting the objects 
of algebra into pure abstractions based on set theory. 
The James axiomatization is also pure abstraction, based 
on the theory of distinctions, for which containers are a 
concrete visualization.

Arrangement provides an example of one of the recurrent 
organizing structures within James forms, the inversion 
frame. Frames are structural skeletons that themselves 
deserved names, not because they are generated often 
by transformations, but because they are associated with 
concepts that we consider frequently. Accumulation, for 
example, leads to frames associated with indication, with 
cardinality and with accumulation itself. The generic 
shape of an inversion frame is (A [B]), where A is the 
frame type and B is the frame contents. Arrangement per-
mits frame contents to be collected or dispersed, both of 
which are useful for computation. Inversion and Dominion 
are degenerate types of inversion frames, within which 
respectively A or B are void. Indication, Replication and 
Promotion are also organized as inversion frames.

Algebraic Dependencies
It is clear that a boundary system requires at least one 
axiom for each type of boundary. The number of useful 
theorems that derive from those axioms, however, can be 
very large. For example, the entire basis of plane geometry 

a generic frame
(A [B])

void inversion
(  [ ])

 inversion
(  [B])

 dominion
(A [ ])

 indication
(A [o])

replication
(A [o...o])

 promotion
(A [<B>])

arrangement
(A [B C])
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was developed from Euclid’s five postulates. A theorem is 
an encapsulation of several transformation steps. A useful 
theorem summarizes sequences that occur often, usually 
across different applications of an axiom system. 

The seven pattern-matching theorems included in Figure 
16-3 are organized spatially by their dependency upon 
the axioms. The figure tracks which axioms are used 
in the proof of each theorem, thereby classifying each 
theorem by the type of boundaries that it, at its founda-
tion, depends upon. This table is empirical. There may 
be other proof sequences that use different axioms or 
fewer axioms, the ultimate question of the most useful 
theorems of James algebra thus has an evolving answer. 

In Figure 16-3 three of the seven theorems are special-
ized extensions of Reflection, and one is an extension 
of Inversion. This limits the importance of these four 
theorems to that of convenience. The Replication theorem 
combines Indication with Arrangement of indications. 
It is at the heart of the process of identifying the cardi-
nality of ensembles. But it is Dominion and Promotion 
that are fundamental to James transformations. Both 
are surprises since both facilitate and strengthen the 
Inversion axiom, yet neither requires Inversion for its 
proof. Dominion incorporates a non-numeric form (that 
is, [ ] is at the deepest level) but is derived directly from 
numeric axioms. It thus identifies a bridge between 

Figure 16-3:  Dependency of theorems upon axioms

                  reaction
               separation
  indication           involution

    inversion               arrangement              reflection

      replication      dominion
             promotion
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numeric and non-numeric mathematical concepts. The 
power of Dominion is to render forms void-equivalent, 
in essence to convert numeric forms into a different 
non-numeric class, that of non-existence. The power of 
Promotion is to move angle-brackets outside of inversion 
frames and thus simplify the internal structure of a form.

Arrangement
Axioms that rearrange structure can be particularly 
expensive to use. There appears to be no good way to 
know which direction Arrangement may need to be 
applied (i.e. disperse or collect) to minimize a form. 
Heading simplification toward the canonical most dis-
persed form can run into intractable growth due to 
exponential generation of replicas. Heading toward a 
most deeply nested form runs into non-canonical path-
ways. What deepest means depends upon local choices 
about which forms to collect together. And there is a 
potentially exponential number of choices. 

The intractable computational behavior of Arrangement 
is essential. Without such a rule, every transforma-
tion sequence would be tractable, computation would 
always be relatively trivial. Only systems that require a 
non-obvious choice of the direction of application for a 
transformation are powerful enough to represent useful 
systems such as simple arithmetic. Thus Arrangement 
is the primary source of computational and algorithmic 
complexity in James algebra. 

In Entirety
The axioms and definitions listed in Figure 16-1 are used 
throughout this volume. The new definitions and theo-
rems not included in Figure 16-1 are presented in Figure 
18-1 of Chapter 18. These new structural theorems are all 
related to the Principle of Composition, permitting the 
equal sign to be integrated into James forms. 

arrangement
(A [B C]) = 

(A [B])(A [C])
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16.4  Remarks 

Boundary forms provide new structural insights. Most 
interesting is the substantial structural similarity between 
two central mathematical systems in our culture: logic and 
numbers. The distinction between Arithmetic and Logic is 
to permit or not permit accumulation. This difference can 
also be expressed by the behavior of distinction bound-
aries. Numeric boundaries are impermeable, that’s why 
they accumulate. Logic boundaries are semipermeable, 
that’s how asymmetric inference works.

Since the Additive Principle is both intuitive and the his-
torical basis of numerics, it may be palatable to accept that 
addition is putting together and that zero is a symbolic 
artifact. The same freedoms are not available for logic, 
a discipline that has been associated over history with 
how our minds work. Western rationality is built upon 
the grounds of TRUE and FALSE. Duality is at the heart 
of our world view. However boundary logic treats void 
with respect, leaving us with only one logical ground. In 
boundary logic, FALSE does not exist. How can we rea-
son without duality? How can logic be unary rather than 
binary? Peirce and Spencer Brown answer these questions 
through their iconic foundation for logic that confounds 
truth with existence.18

We begin this volume with a new perspective on equality, 
abandoning induction in favor of explicit construction of 
forms. We then explore the elementary structure of pure 
boundary math. The current conventional definitions of 
number and arithmetic, the nature of formalism, and its 
relation to computation are next. The final few chapters 
introduce postsymbolic thinking and describe how and 
why set theory, logic and functions are not particularly 
elegant ideas. The volume ends with the network version 
of James algebra.
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Endnotes
1. opening quote: G. Spencer Brown (1969) Laws of Form p.6-7. Online 
8/18 at http://www.manuelugarte.org/modulos/biblioteca/b/G-Spencer-Brown-Laws-of-
Form.pdf.

2. and by George Spencer Brown in the 1960s: During the 1980s and 
90s I explored many representational and pedagogical varieties of iconic 
arithmetic, focusing especially on computational parallelism. 

3. our approach to iconic representation and computation to Interval 
Research Corporation: Interval (IRC) was Paul Allen’s research company 
located in Palo Alto California. IRC operated from 1993 to 2001 (thus the 
“interval”) developing primarily new software tools and algorithms.

4. more thoroughly explored in Chapters 41 and 42: The center pieces of 
Volume III are the non-reducing composite units (<[ ]>), which is nominally 
called divide-by-zero, and [<( )>], called J. These forms provide a sufficient 
basis for the definition and exploration of infinite and imaginary numbers. 

5. the art of giving the same name to different things: H. Poincaré (1908) 
Science et Méthode p.375. In G. Halstead (trans.) (1913) The Foundations of 
Science. Online 8/18 at https://www.gutenberg.org/files/39713/39713-h/39713-h.htm

6. A number is what it does: P. Lockhart (2017) Arithmetic p.182.

7. the creation of thousands of indigenous languages: There are estimated 
to be about 7000 different languages currently spoken by humans.

8. mathematics is the highest form of knowledge; science is mere opin-
ion: P. Maddy (2008) How applied mathematics became pure. The Review 
of Symbolic Logic. 1(1) p.16-41.

9. mathematics became the substance of scientific theories: M. Kline 
(1972) Mathematical Thought from Ancient to Modern Times p.394.

10. progressing beyond concepts suggested by experience: Kline p.1030.

11. Number is complete ability to ignore all differences in content: M. 
Walicki (1995) The origin of mathematics. Online 8/18 at https://www.
ii.uib.no/~michal/phil/om/om.pdf
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12. They are tools shaped by the use they are intended for: V. Huber-Dyson 
(1998) On the nature of mathematical concepts: why and how do mathema-
ticians jump to conclusions? Online 8/18 at https://www.edge.org/conversation/
verena_huber_dyson-on-the-nature-of-mathematical-concepts-why-and-how-do-mathe-

maticians

13. the systematic use of letters to stand for numbers: J. Derbyshire 
(2006) Unknown Quantity p.81.

14. dream of a symbolism for all human thought: Derbyshire p.94.

15. easily mastered manipulation of symbols: Derbyshire p.94.

16. the points of meaning on which transformations depend: A. DeMorgan 
(1849) Trigonometry and Double Algebra p.114. (Emphasis in original.) Online 
8/18 at https://archive.org/details/trigonometrydoub00demoiala/page/n8

17. make the rules necessary consequences: DeMorgan p.93.

18. iconic foundation for logic that confounds truth with existence: On 
page xiv of Laws of Form Spencer Brown writes: 

It is possible to develop the primary algebra [his container-based rules 
of logic] to such an extent that it can be used as a restricted (or even 
as a full) algebra of numbers. There are several ways of doing this, 
the most convenient of which I have found is to limit condensation in 
the arithmetic, and thus to use a number of crosses in a given space to 
represent either the corresponding number or its image.

The result of limiting condensation is Accumulation. Spencer Brown’s num-
ber and its image have been separately distinguished in James algebra as 
round-brackets and square-brackets.
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Mathematics has schools of thought. The traditional 
categories are pure mathematics and applied 

mathematics.2 I’m from a third school of thought, com-
puter science. Computation is mathematics without 
infinities, which excludes most of what a pure mathe-
matician does. It is intensely practical, we are after all 
trying to get machines to do interesting things. James 
algebra is designed for a computer to implement. 

Mathematical content and technique have changed so 
rapidly over the last fifty years that the concerns and 
contributions of Frege and Peano and Hilbert and Gödel 
seem antiquated at best. We have not even considered 
the revolution in contemporary mathematics initiated by 
Grothendieck (and many others) that has fundamentally 
changed what advanced math is. Nor have we integrated 
the algorithmic work initiated by Turing (and many oth-
ers). This chapter continues in a relatively narrow vein, 
considering only one small addition to the structure of 
mathematics, a change that is already fully underway 
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Grothendieck
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All of life is imbued with nonsymbolic communication....
A book is a book as an object prior to being a book that 

can be decoded as a bearer of symbols.1 
— Jaron Lanier (1989)
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during the first two decades of the twenty-first century. 
Postsymbolic math is mathematics that recognizes the 
formal structure of non-textual forms.

What cognitive limitations are imposed by the choice of 
a particular style of representation? What are the costs 
of attempting to separate the content of a communication 
from the method of its transmission? Does formulating 
our criteria for clarity, proof and efficiency in terms 
of linear strings of symbols limit our capabilities for 
understanding the concepts that these strings suppos-
edly represent? Could it be that what we consider to be 
rational and logical thought is burdened by approaches 
to communication that are excessively narrow?

A theme is that the representation of formal thought is 
a design choice, one that strongly interacts with both 
content and cognition. Reading the book is not isomor-
phic to seeing the movie.3 Symbolic techniques support 
an ancient Greek belief that formal thinking is entirely 
cognitive, that sensation has no place within the rigor of 
mathematics. Iconic techniques support a postsymbolic 
perspective that cognition is embodied, that rigor arises 
from its biological and physiological context. A screen-
play is expanded into a movie by enriching its sensual 
elements: sound, light, action! In reducing a movie to its 
readable text, sensuality retreats into the imagination, 
an enrichment of a different kind but one that weakens 
rigor by removing the validation of experience.

26.1  Contemporary Mathematics
Contemporary mathematics is not only lacking a foun-
dation, it is adverse to the simplicity imposed by a 
foundation of any type. Logic and algebra and geom-
etry have been woven into a tapestry that provides a 
rich diversity while also providing exciting glimpses of a 
richer unity. The time honored metaphor of a plethora of 
balconies overlooking a central town square, providing 
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a diversity of perspectives on a singular center, has been 
inverted. Mathematics is now a grand hotel with a pleth-
ora of balconies each looking out in a different direction. 
The hotel’s core, the elevator shaft, provides a way to 
reach each of the rooms, but only as a method of traversal, 
not as an organizational principle. Abstract mathematics 
has transcended the concept of a foundation, rendering 
Russell’s and Brouwer’s and Hilbert’s dreams as ancient 
history. 

Fernando Zalamea, in his philosophical study of con-
temporary mathematics, summarizes recent growth as

a complex dialectic that delineates both the move-
ment of concepts/objects (the functorial transit 
between the algebraic, the geometric, and the 
topological) and the relative invariants of form 
(cohomologies). At stake is a profound mathematical 
richness — a richness that vanishes and collapses if 
one restricts oneself to thinking in terms of elemen-
tary mathematics.4

Logic, set theory, algebra and geometry are each in 
themselves idealizations that apply false partitions within 
advanced mathematics, and critically, they also do not 
provide a ground for understanding. Zalamea sees the 
bulk of modern philosophy in mathematics as rehashing 
centuries old debates that themselves have been replaced 
by radical innovation. 

Shaking the Ground
We’re not exploring in this chapter the specific axioms of 
James algebra so much as an iconic approach to under-
standing the classical mechanisms of mathematics. Two 
features enable boundary math to contribute to the vision 
of a new basis for math education:
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— Iconic form is fundamentally different than 
symbolic expression since it accommodates 
our physical senses.

— The available mapping of James forms 
to conventional expressions provides a 
metamathematical bridge. 

In this and the following two chapters we will focus upon 
the comparative characteristics of different foundational 
axiom systems. And it is here that boundary math may 
appear to be most outrageous, partly because it violates 
so many of the presumed and established rules of how 
mathematical representation works, partly because such 
violations may appear to be arrogant or disrespectful 
or incompetent, and partly because comparing a new 
and different experimental approach to a culturally 
established pillar of wisdom will necessarily appear to 
be comparing a trickle to a river. Boundary math lacks 
the depth and diversity of a field that has been evolving 
over millennia. It both borrows and mirrors, while at 
the same time being audacious enough to suggest that 
for elementary mathematics to be complete, computation 
and experience are equally as important as abstraction. 
And incidentally, if Zalamea and his contemporaries 
are correct, we are but dancing on graves of the already 
departed.

26.2  Postsymbolic Math
Iconic form is postsymbolic. It enlists images and expe-
riences as glue to repair the disconnection of words and 
textual symbols. The container is perhaps the smallest 
step away from words to icons. Certainly, apart from 
emoticons, containers as textual delimiters are the only 
iconic forms available on a conventional typewriter. 
Typographic characters do not support a meaning of their 
own.5  They are building blocks for words but do not 
individually contribute to the meaning of a word. Only 
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the first few whole number digits have retained even a 
ghost of the image of their former selves. Parentheses in 
contrast overtly separate inside from outside both tex-
tually and visually.

The construction of mathematics (and our tacitly symbolic 
understanding of mathematics) from strings of tokens is 
somewhat a reaction to the separation of algebra from 
geometry in the nineteenth century. Math historian Israel 
Kleiner observes that “mathematics evolved for at least 
three millenia with hardly any symbols.”6 Iconic nota-
tion was widely used by Peirce, Frege, Venn and other 
founders of formal arithmetic at the turn of the twentieth 
century, but by the 1950s the currency of mathematical 
expression was typographic. I suspect the construction 
of the syntax/semantics barrier gave false security that 
all structural concepts could be stringified. The opera-
tion of juxtaposition (aka concatenation) created de facto 
sequences of symbols, while spatial ensembles were com-
pletely ignored. Here’s Brian Rotman:

Within the Platonist program, this alphabetic prej-
udice is given a literal manifestation: linear strings 
of symbols in the form of normalized sequences 
of variables and logical connectives drawn from 
a short, preset list determine the resting place for 
mathematical language in its purest, most rigor-
ously grounded form.7

Origins
Euclid’s Elements was the primary mathematics textbook 
throughout Western history until the mid-eighteenth cen-
tury. Although Euclid introduced the axiomatic method, 
his content was geometric structure without the inclusion 
of number as measurement. Geometry yielded to algebra 
in the 1800s, and algebra to logic at the end of that century, 
although only for a few decades. The enthusiastic explora-
tion of logic led not only to monumental symbolic efforts 
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such as Whitehead and Russell’s Principia Mathematica, 
but also to iconic techniques such as Venn’s diagrams, 
Hasse’s ordering diagrams, Frege’s concept script and 
Peirce’s existential graphs. The mutual heresy of these 
pioneers was to advocate concepts embedded in spatial 
arrangements rather than in strings of tokens. Ancient 
Greece scholar Reviel Netz observes:

Mathematical diagrams may well have been the first 
diagrams. The diagram is not a representation of 
something else; it is the thing itself. It is not like a 
representation of a building, it is like a building, 
acted upon and constructed.8

Peirce
Charles Sanders Peirce is recognized as America’s great-
est philosopher, having made foundational contributions 
to formal logic, semiotics and the entire panoply of phi-
losophy (ethics, ontology, metaphysics, …). Peirce makes 
the case that spatial visualization is the native vocabulary of 
rational thinking. To Peirce, formal structure was a geo-
metric not a textual property. Geometric properties can 
be observed directly. Therefore, the process of thought 
is directly observable in the structure and transforma-
tion of iconic forms of logic. This structure is obscured 
by textual expressions, since text cannot directly repre-
sent some essential concepts of iconic logic. Worse, text 
obscures the process of rational thinking by hiding its 
spatial structure behind essentially arbitrary tokens. 
Here is Peirce’s commentary on his pioneering develop-
ment of iconic logic:

I dwell on these details which from our ordinary 
point of view appear unspeakably trifling, — not 
to say idiotic, — because they go to show that this 
syntax is truly diagrammatic, that is to say that its 
parts are really related to one another in forms of 
relation analogous to those of the assertions they 
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1881–1966

Arend Heyting
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represent, and that consequently in studying this 
syntax we may be assured that we are studying 
the real relations of the parts of the assertions and 
reasonings; which is by no means the case with the 
syntax of speech.9

The question is whether or not diagrams and images can 
convey the same formal information as strings. Venn 
developed his diagrams with set theory in mind; Peirce 
developed his existential graphs with logic in mind; Hasse 
developed his diagrams with partial orderings in mind. 
But with the development of metamathematics in the first 
half of the 20th century, these iconic techniques were 
ignored or rejected as insufficiently formal, which lead 
to a general disregard for the attempts by Venn, Peirce, 
Frege and others to incorporate the expressive power of 
spatial forms into formal mathematics. Peirce philosopher 
Randell Dipert observes:

We should also give some hard thought to the dif-
ficult question of how much conceptual progress 
is made by symbolism and symbolic rigor alone....
The recent history of logic has appeared to value 
any, and sometimes quite shallow and unenlight-
ening, symbolisms and axiomatizations and tended 
to dismiss any non-symbolic historical account (for 
example those of Aristotle or Ockham) as so much 
empty verbiage.10

Constructivism
Arend Heyting, student of the founder of the intuitionist 
school of logic L.E.J. Brouwer, contributed to turning 
constructivism into a formal system with rules slightly 
different than classical logic. Heyting’s idea that all math-
ematical objects should be shown to exist, rather than 
just being inferred, essentially calls for algorithmic proof. 
Within intuitionism Truth gives away to Justification, 
allowing for context within logical expressions. In order 
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to reach toward a mathematics built upon what is obvious 
rather than obscure, constructive logic eliminates the 
Law of Double Negation, which is equivalent to elim-
inating one of Aristotle’s grounding principles of logic, 
the Excluded Middle, 

A v ¬A = TRUE

The meaning of an expression is no longer anchored to 
a truth-value, a first step toward iconic form in which 
meaning can be associated with physical circumstance. 
Heyting’s perspective combines constructive existence 
with meaning accessible to intuition, leading the way for 
anchoring mathematics within diverse experience rather 
than within a binary evaluation. Heyting:

A mathematical construction ought to be 
so immediate to the mind and its result so clear 

that it needs no foundation whatsoever.11

For some, mathematical thought has always been post-
symbolic. Here’s Einstein:

Words and language, whether written or spoken, do 
not seem to play any part in my thought processes. 
The psychological entities that serve as building 
blocks for my thought are certain signs or images, 
more or less clear, that I can reproduce and recom-
bine at will.12

Iconic Formality
Since the iconic approach incorporates types of structure 
that are simply not available within a string-based nota-
tion, spatial formalism is an asset rather than a liability. 
Today diagrammatic mathematics permeates modern 
formal systems. Premiere examples include Saunders 
Mac Lane’s category theory, Reidemeister’s knot invari-
ants, Conway and Wolfram’s cellular automata, and 
Feynman diagrams. The recent acceptance that human 
thought must have a physiological basis is essential to 
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double negation
¬¬A = A
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the recognition of iconic form as mathematical structure. 
Wittgenstein emphasizes the relation between thinking 
and language. Other modern theorists have integrated 
the Platonic realm with the physical body, particularly

— Stanislas Dehaene (neurological substrate of 
numbers)

— John Horton Conway and Richard Guy 
(mathematical games), 

— Benoit Mandelbrot (fractal geometry),
— George Lakoff and Rafael Núñez (embodiment 

of arithmetic), and
— Brian Rotman (mathematical communication 

and belief)

As well George Spencer Brown and Louis Kauffman 
are of special importance to the development of iconic 
mathematics and James algebra.

Although it appears as though James forms are symbolic 
in that they stand in place of putatively abstract concepts, 
the intention of an iconic system is that representation 
looks like what it means. This step is unique for several 
reasons.

— James forms have a physical as well as a 
representational manifestation.

— The physical manifestation can be read as 
concepts and be interpreted as numbers.

— The conceptual basis of James forms differs 
from that of numeric expressions.

— What James forms represent is not what 
numbers represent. 

— Containment is not counting.

It is challenging to isolate one or two facets of boundary 
mathematics that deviate from conventional arithmetic. 
The change in perspective is systemic rather than local. 
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We have already highlighted many of these conceptual 
shifts.

— Arithmetic is about physical experience. It is 
not abstract. 

— Formal rigor is not incompatible with direct 
experience.

— Iconic forms provide their own meaning.
— Reliance on strings of symbols limits the 

perspectives of mathematics.
— Void-equivalence eliminates meaningless form.

At the same time, boundary mathematics maintains 
rigorous formality. It is neither a psychological nor an 
educational technique. It is a collection of axiomatic sys-
tems that share common characteristics. Formality is an 
essential aspect of computational math. Only computa-
tional demonstration is sufficiently rigorous to meet the 
formalist criteria for mathematical veracity. 

Incremental Numbers
Each whole number is an accumulation of the numbers 
that precede it. Different formal models generally differ 
by the way in which accumulation is achieved. Hilbert 
describes numbers specifically as tally marks, as intuitive 
signs so obvious that they come prior to logic and prior 
to inferential definition. Frege defines numbers concep-
tually: 0 is the number of objects that are not identical to 
themselves; 1 is the number of things that are 0; 2 is the 
number of things that are either 0 or 1. Peano generates 
natural numbers by assuming both 1 and the successor 
operation, +1. The next number is the successor of the 
prior number. Ernst Zermelo, an originator of set the-
ory, conceived of the natural numbers as the successive 
nesting of sets. Rather than incrementing, the successor 
function converts an existing number into a singleton 
set. VonNeumann’s set theoretic successor constructs the 

Zermelo
0 = { }
1 = {0}
2 = {1}
3 = {2}

n = {n–1}

vonNeumann
0 = { }
1 = {0}

2 = {0,1}
3 = {0,1,2}
n = {0,...,n}

Peano
0 exists
1 = 0'
2 = 1'
3 = 2'

n = (n–1)'

Frege
0 exists
1 = #0
2 = #1
3 = #2

n = #(n–1)

accumulation
• • ≠ •

Hilbert
1 = |
2 = ||
3 = |||

n = |..n..|
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union of the prior and the current number. The empty 
set { } has zero members, while the set of the empty set 
{{ }}, has one member, and {{ },{{ }}}, the set of 0 
and 1, has two members. Frege and vonNeumann build 
numbers from the collection of all numbers before them. 
Peano and Zermelo do not. In all cases, each number has 
its own unique structure.

Paul Benacerraf observes that these definitions are mutu-
ally contradictory.13 For Zermelo, the number 5 is a set 
with one member, for vonNeumann is it a set with five 
members, for Frege it is five conceptual differences, for 
Peano it is five unitary increments and for Hilbert it is 
five identical tallies. Boundary arithmetic identifies 1 as 
a distinction, ( ). The emptiness inside serves as 0 but it 
is actually nothing. Then like Hilbert and like other tally 
systems, numbers grow in magnitude by the expedient 
of not permitting condensation. 

The complexity of numbers themselves depends on 
the choice of foundational approach. Zermelo gives us 
the whole numbers; vonNeumann gives us the ordinal 
numbers. Cantor journeys all the way to actual (rather 
than potential) infinity. His definition of an infinite set 
is something that can be grasped as a whole. Modern 
theorists as such Badiou see the entirely of countable 
numbers as a structured whole. Numbers themselves are 
a unity. No single number makes sense without reference 
to all other numbers. You can tell a unity because it has a 
boundary rather than an unlimited expanse. This leads us 
to our current structural definition of a James number: 

A number is a reduced James form
that contains a round unit, ( ), 

and does not contain a square unit, [ ].

Mathematics Education
The approach we are exploring is not intended to sim-
plify or to modify the edifice of mathematics itself. We 
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are not challenging professional mathematics, but we are 
challenging unprofessional mathematics education. The 
central question is whether or not there is a conceptually 
simpler approach to mathematical ideas that might benefit 
the 99.9% of people who do not engage in advanced math-
ematics, and the two-thirds of Americans who literally 
hate math.14 As I tell my students, it is most likely that 
what they hate is not mathematics. Math is a tool, and 
it’s hard to hate a hammer. What they hate is the expe-
riences imposed upon them in the name of mathematics 
education. What they hate is the disrespect.

Until a student becomes a math major, in upper-division 
college, math teachers usually do not mention sets or log-
ics or varieties of algebras. Yes, set theory and logical 
deduction and functional analysis are useful mathemat-
ical systems for students to know, but the fact is these 
mathematical skills are not taught in K-12 anyway. Some 
aspects of foundational thinking are embedded implicitly 
into math education but none are taught as math educa-
tion. Making the ground upon which a learner stands 
implicit leads to confusion rather than to understanding. 
It’s like asking a carpenter to built the walls of a house 
without having a cement slab to stand upon.

Even group theory, the conceptual mechanism under-
neath modern algebra, is not taught as high school 
algebra. Seeing symmetry is vital. Intuitive understand-
ing of symmetric form is vital. But these conceptual skills 
are not in the K-12 mathematics curriculum. Group the-
ory is an upper-division college course for math majors. 
Category theory, until very recently, was reserved for 
graduate school. Yet we still teach algebra with spe-
cifically selected group theoretic algebraic structures 
implicitly embedded as the rules of algebra. These rules 
provide a rather antiquated perspective on algebra. 
Useful in some circumstances but positively destructive 
to the growing understanding of young students. This 
is simply because these rules are taught as symbolic 
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behavior, while students for the most part are learning 
about human behavior.

The Rules of Algebra (the familiar concepts of commu-
tativity, associativity, zero, inverse and arity) pervade 
elementary and secondary mathematics education, per-
haps due to a belief that these concepts somehow explain 
how arithmetic works. But prior to the introduction of 
symbolic forms, preschool mathematics emphasizes inter-
active manipulation, embodiment rather than abstraction 
of concepts. The tension between these two approaches “is 
a fundamental and unavoidable challenge for school math-
ematics.”15 The lesson of the Additive Principle is that the 
symbolic concepts that classify the arithmetic of numbers 
as an Abelian group are not the same concepts that have 
defined numbers throughout their evolutionary history.

Research in mathematics education recognizes the neces-
sity of multiple modes of representation and multiple 
theoretic perspectives, placing mathematics learning 
in a pluralistic human context.16 In contrast Hilbert’s 
Program, the formal agenda of mathematics, removes 
from the operations of mathematics gross intuition, psy-
chological necessity, physical interaction and concrete 
manipulation.17 In support of Hilbert, here’s mathema-
tician Herbert Weyl: “We now come to a decisive step 
of mathematical abstraction: we forget about what the 
symbols stand for.”18

The symbolic model of arithmetic trades the visual and 
physical intuition that arises from direct experience for 
memorization of the rules of manipulation of structured 
strings of abstract tokens that explicitly divorce represen-
tation from meaning in order to protect rigor. The goals of 
advanced mathematics do not necessarily align with the 
needs of novice learners nor with the objectives of math-
ematics education.19 Educator James Kaput is directly 
critical of the emphasis of form over content, and attempts 
to steer mathematics education toward representational 
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diversity.20 The advent of computer graphics and web-
based virtual manipulatives21 has reinforced visual and 
manipulative techniques at all levels of math education, 
but arithmetic itself is still characterized by a single sym-
bolic theory (algebraic group theory) to the exclusion of 
other conceptualizations of number.

26.3  Simplifying Foundations
Modern descriptions of natural numbers invariably enlist 
axioms that embed sets to identify domains and equivalence 
classes; predicate logic to provide connectives, quantifica-
tion, and relations; and functions to enable transformations 
and invariants. What would numbers look like, indeed how 
would we be able to conceive of their structure without 
sets, logic and functions? What would a mathematical 
foundation that was calibrated, for example, for ease of 
understanding and teachability look like? Mathematician 
Alexandre Borovik states the case elegantly: “We cannot 
seriously discuss mathematical thinking without taking 
into account the limitations of our brain.”22

The goal is to construct an iconic system that does not 
require the foundational axiomatic theories of sets, logic 
and functions. This does not mean that we abandon all 
mathematical concepts, just the dominant prepackaged 
component systems that currently serve as conventional 
foundations. We will keep the binary contains relation, 
the concept of equality, and the mechanism of pat-
tern-matching and substitution constrained by pattern 
transformation rules. These features may be character-
ized as algebraic. In the following two chapters we will 
explicitly eliminate set membership, logical quantifica-
tion, logical inference, induction and functional thinking. 
This makes James algebra challenging to talk about, so 
we will relax a bit and use conventional mathematical 
concepts in the metalanguage to converse about iconic 
concepts and to compare iconic structure to conventional 
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structure. An experiential system though, in the final 
analysis, is characterized by actions rather than words.

A primary use of set theory is to provide standardized 
conceptual tools that can describe mathematical systems. 
The effort has been from its inception controversial. 
Apparently benign axioms lead to difficult to accept con-
sequences.23 Set theory itself is built upon the language of 
predicate calculus, aka first-order logic. A primary use 
of predicate calculus is to provide tools that can describe 
structural invariants across functions, relations, domains 
of objects and techniques of proof. The functions and rela-
tions of predicate calculus vary, depending upon the kind 
of mathematical structures we seek to describe. However 
quantification and logical inference are shared across 
almost all types of mathematical systems to describe 
domains and transformations. 

The difficulty is, bluntly, that it might be imperative 
to quarantine these tools since many are toxic to the 
non-professional and most are represented by language 
that has grown to be outside of general human compre-
hension. It takes Russell and Whitehead, in Principia 
Mathematica, 345 pages to construct a sufficient ground-
work of symbolic logic to introduce the concept One as 
“the class of all unit classes.” This One requires on the 
order of 50,000 symbols.24 

As symbolic form burgeons, newer mathematical approaches 
such as cellular automata and chaos theory are coming to 
the conclusion that complexity is just a whole lot of simplic-
ity. In the 1920s, Frank Ramsey (and Bertrand Russell) 
made the case for simple mathematics. Here’s Ramsey:

So in saying that every thing in whose existence we 
have reason to believe is simple, I mean that there 
are no classes, complex properties or relations, or 
facts; and that the phrases which appear to stand 
for these things are incomplete symbols.25

Frank Ramsey
1903–1930
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For another contrast, we take as both axiomatic and obvi-
ous that a closed curve has an inside and an outside. This 
observation in mathematics is called the Jordan Curve 
Theorem: Every simple closed planar curve separates the 
plane into a bounded interior region and an unbounded 
exterior. Using the HOL automated theorem-prover, 
Thomas Hales completed the proof of the Jordan Curve 
Theorem, but at the cost of its simplicity.

The formal proof of the Jordan curve theorem in 
HOL-Light consists of 138 definitions, 1381 lemmas, 
and over 44,000 proof steps spread over 59,000 
lines of computer code. There are approximately 20 
million primitive logical inferences in this proof.26

The iconic perspective is that the problem is symbolic 
representation, not the nature of closed curves.

Mapping
The foundational theories of mathematics are designed 
to accommodate all mathematical ideas and notations. 
Naturally they have come into being, primarily in the 
twentieth century, through extensive study by the great-
est mathematical minds of our time. Our goal here is far 

Figure 26-1:  Deconstruction of formal mathematics

FORMAL MATHEMATICS 
   established       boundary

 propositions + connectives       
                     +        forms + containment
            truth + negation 

 relations + quantification   patterns + pattern-matching

 specific domains + set theory    transformation rules

 equality + substitution    equality + substitution
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more modest: to design an adequate formal system that 
is simple enough to convey some basic ideas to naive 
minds. Thus we are pursuing a system that is visual and 
manipulable, that has only one binary relation, and that 
does not need the support of other foundational systems.

Figure 26-1 compares a hierarchical deconstruction 
of mathematical foundations to analogous components 
within the James system. Threaded throughout the 
objects of math are mappings between objects. The most 
common of these is the function, a relation between the 
inputs and outputs of a process or a transformation. The 
group theoretic structure of functions is compared to the 
mechanisms of James algebra in Figure 26-2. Functions 
themselves are objects of study in mathematics, leading to 
the concept of a morphism, or a structure preserving map 
between mathematical structures. Structure preserving 
means, roughly, that the objects and the transformations 
between two systems align. Recently the study of mor-
phisms has led to the more abstract approach of category 
theory, in which the objects of study are mapping sys-
tems themselves. The premier example of a category is 
the category of sets, which includes collections of unique 
objects and the functions that relate them. Mathematician 
Barry Mazur:

Figure 26-2:  Conventional algebraic axioms and James axioms

           group theory             ☞  James algebra

 commutativity      independence of content
 associativity     independence of content
 additive identity      void          n
 multiplicative identity   Indication    ([n] [o] )
 additive inverse     Reflection      n < n >
 multiplicative inverse          ([n]<[n]>)
 distribution      Arrangement
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A category is a mathematical entity that, in the 
most succinct of languages, captures the essence of 
what a mathematical theory consists: objects of the 
theory, allowable transformations between these 
objects, and a composition law telling us how to 
compose two transformations when the range of the 
first transformation is the domain of the second.27

Proof
There are two other great themes within mathematics: 
proof and interpretation. The simple perspective on proof 
is that it is following rules to get from one form to another. 
Since proof can be accomplished by different systems of 
transformation (logic, algebra, pattern-matching) deduc-
tive reasoning is not an essential component. 

An interpretation is a mapping between symbols and rela-
tions. Presumably, symbols are arbitrary, we can represent 
the concept of five by 5, by cinq, or by a hand with fin-
gers spread open. Technically functions map symbols to 
other symbols, ones that we have perhaps a better under-
standing of. Mathematics seems to have a difficult time 
bridging the gap between the symbolic and the concrete. 
Indeed, we are using the word interpretation to mean a 
formal mapping between container forms and mathemat-
ical expressions composed of arithmetic symbols. 

An entirely different use of interpretation is to assign 
meaning to symbols, where we are strict to maintain 
that meaning exists only in the physical world. The plus 
symbol might be interpreted to assert that we should put 
two things together, given that the things themselves are 
concrete rather than symbolic. 3 + 4 does not tell us to 
put together the two squiggles 3 and 4. It tells us to put 
together 3 and 4 of something. For elementary arithme-
tic that something is tallies, what we have been calling 
indications. Here we also have the option of converting 
container configurations to arrangements of physical 
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containers, so that the meaning of (( )), for example, 
is a physical container residing within another physical 
container. We might even say that when we see physical 
containers as mathematical relations we are interpreting 
the physical as something virtual.

The current postsymbolic challenge is to provide a proof 
of principle that it is possible to describe significant math-
ematical systems without symbols and without the tools 
that enforce a symbolic conceptualization. Our working 
example, James algebra of containers, can certainly be 
described symbolically, and we have done so by implying 
that the contains relationship is a logical relation. But 
which aspects of the core concept of a distinction rely 
upon the infrastructure of sets and logic, and which are 
more accurately conveyed by physical containment? Can 
the relationship between a container and its contents be 
described without calling upon predicate calculus?

26.4  Doing without Symbols
Symbolic exposition dominates mathematics, especially 
foundational mathematics. Educators rationalize the 
frustration they visit upon students trying do math “in 
their heads” rather than with their eyes and fingers and 
bodies by claiming that mental math is both necessary 
and good for you. Presumably it helps the development of 
rational thinking. There is absolutely no evidence to sup-
port this. Most math teachers who express their distress 
publicly say that they love math, and that something is 
dreadfully wrong. The subtext of an exploration of iconic 
math is, of course, that one thing that is dreadfully wrong 
is symbolic math. Tristan Needham, in his ground-break-
ing textbook Visual Complex Analysis makes this appeal:

When one opens a random modern mathematics 
text on a random subject, one is confronted by 
abstract symbolic reasoning that is divorced from 
one’s sensory experience of the world....The present 
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book openly challenges the current dominance of 
purely symbolic logical reasoning by using new, 
visually accessible arguments to explain the truths 
of elementary complex analysis.28

It is not difficult to find professional mathematicians and 
educators who are disturbed by the requirements that 
symbolic math has put on student learners. Here’s math 
educator Norman Wildberger:

I am confident that a view of mathematics as swim-
ming ambiguously on a sea of potential Axiomatic 
systems strongly misrepresents the practical reality 
of the subject...at no point does one need to start 
invoking the existence of objects or procedures that 
we cannot see, specify, or implement.29

Historical Context
Plus, +, the first widely used sign in arithmetic, originated 
in the West in the middle of the fourteen century. At 
that time algebra was written out in words. The words 
gradually morphed into shorthand symbols. From a book 
by Leibniz scholar Louis Couturat:

The symbols now in use for the operations and rela-
tions of arithmetic mostly date from the sixteenth 
and seventeenth centuries; and these “constant” 
symbols together with the letters first used sys-
tematically by Viète (1540-1603) and Descartes 
(1596-1650), serve, by themselves, to express many 
propositions.30

Couturat emphasizes that Leibniz sought an iconic sys-
tem of notation for his universal language, “by providing 
an ideography, in which the signs represent ideas and the 
relations between them directly (without the intermedi-
ary of words).”31 Here’s Leibniz:
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But it will be appropriate for the signs to be as 
natural as possible, e.g. for one, a point, for numbers, 
points.... The whole of the writing will therefore be 
made as if of geometrical figures and like pictures, 
just as the Egyptians once did and as the Chinese 
do today.32

Today, formal mathematics is expressed almost exclu-
sively as strings of symbols. Successive transformation 
of strings generates the structure of proofs. The rules of 
string formation and transformation provide the syntax 
of mathematics. However, as Joseph Goguen observes, 
our actual notation for arithmetic is mixed.

With Arabic numerals, the use of 1 for “one” is 
iconic (one stroke), but the others are symbolic; 
using the blank character for “zero” would be 
iconic.... When an operation like + is associative, 
it is usual to omit parentheses; thus we write a+b+c 
instead of (a+b)+c or a+(b+c).... Dropping paren-
theses is iconic of the fact that it doesn’t matter 
where they are; spread sheets also exploit this. 
Using 0 for the identity of addition is only sym-
bolic, but using 1 for the identity of multiplication 
is indexical.33

Goguen concludes 

Perhaps mathematics could only get started through 
the iconic notation of its earliest achievements. And 
certainly hiding that iconicity is harmful to students 
trying to learn mathematics.34

Semantics
If mathematics is to stand alone, without reliance upon 
other more concrete disciplines, then the concept of 
semantics, of a tie to reality, is irrelevant. Mathematician 
Edward Nelson expresses the structuralist viewpoint,
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The role of syntax in mathematics is not to express 
semantic truths (because there are no semantic 
truths in mathematics to express). Mathematics is 
syntax, and syntax is mathematics itself.35

Nelson continues, “What is real in mathematics is simply 
formulas and proofs themselves, as strings of symbols.”36

If we are to take this view seriously, then James algebra is 
not mathematics. But over the last few decades, diagram-
matic mathematics has been widely accepted within many 
sub-disciplines of mathematics (as discussed in Chapter 
1). The whole numbers are on a particularly firm iconic 
foundation. The numeral 3 is the label for Leibniz’ concep-
tualization of numbers as points, a label for the icon •••. 

There are also severe foundational questions when one 
considers the definition and implementation of arbitrary 
symbolic specifications. Symbolic “rules” that appear to 
define sets or truth-valued logical expressions or func-
tions can be arbitrarily incomprehensible, or undecidable 
or ambiguous. There are simple mappings such as the 
Collatz function that are believed to behave chaotically 
during iterated recursion. (There is no known proof that 
iteratively feeding the Collatz function back into itself 
always terminates at 1.) There are structural questions 
that are unanswerable, for example: What is the longest 
sequence of 7s in √2? And questions that seem answer-
able but may take longer than the age of the universe to 
compute. For example, find the next pair of twin primes 
greater than a googolplex. Many famous unproved theo-
rems (e.g. the Riemann hypothesis) may not be provable. 
Well-formed algorithms may not terminate, or a well-
formed result may be too large to record within the 
resources of the known universe. We are left having to 
acknowledge that whatever foundation we choose, what-
ever definition of all the numbers we adopt, we may still 
find ourselves in unknown territory. 
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If  n  is even,
  f(n) = n/2

otherwise
  f(n) = 3n + 1



But here is a bold suggestion: those ambiguities may be 
associated with our use of language rather than with our 
use of natural numbers. Penelope Maddy attributes the 
difficulty of learning numbers for toddlers to learning 
number words, acquisition of a linguistic rather than math-
ematical skill. She quotes cognitive scientist Paul Bloom:

It is not that somehow children know that there is 
an infinity of numbers and infer that you can always 
produce a larger number word. Instead, they learn 
that one can always produce a larger number word 
and infer that there must therefore be an infinity 
of numbers.37

By admitting that mathematics is a human endeavor, we 
may not be able to avoid symbolic confusion. But perhaps 
some of these types of confusion can be avoided by iconic 
and behavioral communication.

Embodiment
Postsymbolic math is embodied rather than abstract. 
There is a deeper alienation: symbolic representation 
denies that our eyes and our bodies and our thoughts 
are grounded in experience. Using symbolic tokens to 
convey structural ideas is neither intuitive nor natural. 
Symbols drastically increase cognitive load, we must 
memorize their meaning. String representation requires 
structural redundancy that is both technically inaccurate 
and cognitively misleading. We impose commutativity on 
addition to create symbolic addition but natural addition 
occurs in space as fusion, with no sequential first and 
second objects. And for most learners, symbolic systems 
engender insecurity since they ask for a mode of learning 
that has no biological or evolutionary basis.

Acceptance and memorization of concepts that have no 
possible basis in experience helps to undermine under-
standing. Young learners and their teachers appear to 
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have little choice but to believe what they are told, that 
symbolic mathematics supports out-of-body experience, 
that it takes one to unreachable infinities, and that it 
denies common sense by expressing its ideas in generally 
incomprehensible strings of arcane symbols. 

26.5  Remarks
In Chapter 27 and Chapter 28 we’ll explore the rationale 
for avoiding the abstract formalism that now accompanies 
mathematical foundations. The mechanisms of set mem-
bership, logical conjunction and function composition are 
each equivalent to one another and to the act of physically 
putting things into containers. The binary connectives of 
logic and the arity-dependent composition of functions 
are to some extent not in place to clarify mathematics, 
but rather to limit operations to two arguments at a time. 
It is not that sequential thinking is in error, or that it was 
inappropriate to evolve through the various phases that 
lead to formalized thinking. It is just time to move on to 
newer models that include newer concepts such as parallel 
composition, pattern-driven transformation and iconic 
form. The next two chapters review the reasons to abstain 
from building the foundation of mathematics on logic, 
sets and functions. We’ll then explore the implication of 
making mathematics more than strings of symbols.
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Endnotes
1. opening quote: J. Lanier (1989) Communication without symbols. Whole 
Earth Review 64 p.118-119. Online 8/18 at http://www.jaronlanier.com/jaron%20
whole%20earth%20review.pdf

Not only is Lanier credited with coining the term virtual reality, his company 
VPL was the first to build a virtual reality system. Lanier’s intention is to 
be able to explore direct non-mediated communication. To my knowledge 
in the cited article he is also the first person to use the term postsymbolic 
communication. In J. Lanier (2017) Dawn of the New Everything p.298 he writes:

Consider that people have been innovating ways of connecting with 
each other since the dawn of the species. From spoken language tens 
of thousands of years ago, to written language thousands of years ago,  
to printed language hundreds of years ago, to photography, recording, 
cinema, computing, networking; then to virtual reality, and eventually 
to what I hoped my talk might provide a glimpse of: postsymbolic 
communication — and then on to what I could not imagine.

2. traditional categories are pure mathematics and applied mathematics: 
The old joke is that a pure mathematician is embarrassed if someone finds 
a use for his work, while an applied mathematician is embarrassed if no 
one finds a use.

3. the book is not isomorphic to seeing the movie: And a blank canvas is 
worth a thousand unspoken words.

4. collapses if one restricts oneself to thinking in terms of elemen-
tary mathematics: F. Zalamea (2009) Synthetic Philosophy of Contemporary 
Mathematics p.179.

5. Typographic characters do not support a meaning of their own: There 
are conventions that endow individual characters with meaning, such as 
adding an ‘s’ to make a noun plural or replacing a ‘.’ with ‘!’ for emphasis.

6. evolved for at least three millenia with hardly any symbols: I. Kleiner 
(1991) Rigor and proof in mathematics: A historical perspective. Mathematics 
Magazine  64 p. 291-314. Online 8/18 at https://www.maa.org/sites/default/files/
pdf/upload_library/22/Allendoerfer/1992/0025570x.di021172.02p0031c.pdf
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7. the resting place for mathematical language in its purest, most rigor-
ously grounded form: B. Rotman (2000) Mathematics as Sign p.55. 

8. it is like a building, acted upon and constructed: R. Netz (1999) The 
Shaping of Deduction in Greek Mathematics p.60.

9. which is by no means the case with the syntax of speech: C. S. Peirce 
(1909) MS 514 “Existential graphs” 

10. (for example those of Aristotle or Ockham) as so much empty ver-
biage: R. Dipert (1995) Peirce’s underestimated place in the history of logic: 
A response to Quine. In K. Ketner (ed.) Peirce and Contemporary Thought: 
Philosophical Inquiries p.34.

11. and its result so clear that it needs no foundation whatsoever: A. 
Heyting (1971) Disputations. In P. Benacerraf & H. Putnam (1983) 
Philosophy of Mathematics 2ed p.70.

12. signs or images, more or less clear, that I can reproduce and recom-
bine at will: Einstein, quoted by K. Devlin (2006) The Useful and Reliable 
Illusion of Reality in Mathematics. Toward a New Epistemology of Mathematics 
Workshop, GAP.6 Conference 2006. Online 8/18 at https://web.stanford.edu/~k-
devlin/Papers/Berlin06.pdf

13. these definitions are mutually contradictory: P. Benacerraf (1965) 
What numbers could not be. In P. Benacerraf and H. Putnam (eds.) (1983) 
Philosophy of Mathematics 2nd ed. p.272-294.

14. the two-thirds of Americans who literally hate math: See, for exam-
ple, M. Burns (1998) Math: Facing an American Phobia, and S. Tobias (1993) 
Overcoming Math Anxiety.

15. a fundamental and unavoidable challenge for school mathematics: 
J. Kilpatrick, J. Swalford & B. Findell (eds.) (2001) Adding It Up: Helping 
Children Learn Mathematics p.74.

16. places mathematics learning in a pluralistic human context: J. Greeno 
& R. Hall (1997) Practicing representation: learning with and about rep-
resentational forms. Phi Delta Kappan 78 p.1-24. Online 4/18 at http://www.
pdkintl.org/kappan/kgreeno.htm 
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17. psychological necessity, physical interaction, and concrete manipu-
lation: M. Greaves (2002) The Philosophical Status of Diagrams. 

18. we forget about what the symbols stand for: H. Weyl (1941) The 
Mathematical Way of Thinking.

19. nor with the objectives of mathematics education: M. Donovan & 
J. Bransford (eds.) (2005) How Students Learn Mathematics in the Classroom. 

We do not need to understand how an electronic fuel injector works in order 
to drive a car. Knowledge of the electronic fuel injector is not even essential 
to understanding how a car works. 

20. steer mathematics education toward representational diversity: J. 
Kaput (1987) Representation systems and mathematics. In C. Janvier (ed.) 
Problems of Representation in the Teaching and Learning of Mathematics p.19-26. 

It is quite appropriate here to view representational diversity in a wider, 
cultural sense. Karen François comments:

Traditional mathematics [curriculum] is strongly directed towards 
the performance of techniques and has little to do with the study of 
mathematics as a historical and cultural product nor with the under-
lying cultural values.

K. François (2007) The untouchable and frightening status of mathematics. 
In K. François & J. vanBendegem (eds.) (2007) Philosophical Dimensions in 
Mathematics Education p.14.

21. computer graphics and web-based virtual manipulatives: P. Moyer, 
J. Bolyard & M. Spikell (2002) What are virtual manipulatives? Teaching 
Children Mathematics 8(6) p.373. 

Funded primarily by the National Science Foundation, many of these inter-
active learning tools are available online. For example, 

Utah State University (1999) National library of virtual manipulatives at 
http://nlvm.usu.edu/en/nav/index.html; and 

D. Clements (1999) Concrete manipulatives, concrete ideas. Contemporary 
Issues in Early Childhood 1(1) p.45-60. Online 8/18 at http://www.gse.buffalo.
edu/org/buildingblocks/Newsletters/Concrete_Yelland.htm
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22. discuss mathematical thinking without taking into account the lim-
itations of our brain: A. Borovik (2007) Mathematics under the Microscope: 
Notes on cognitive aspects of mathematical practice p.vi. Online 8/18 at http://
eprints.ma.man.ac.uk/844/1/covered/MIMS_ep2007_112.pdf

23. benign axioms lead to difficult to accept consequences: The Axiom of 
Choice, for example, facilitates the Banach-Tarski paradox, in which a single 
solid object can be disassembled into specific pieces and then reassembled 
into two of the same object with the same size. 

24. This One is on the order of 50,000 symbols: A. Mathias heard this 
estimate and decided to verify the number. He deconstructed the structur-
alist definition of the number One from the Bourbaki school by identifying 
each symbol and expanding it to its most primitive definition. Going back 
to the very basics of symbolic definition, as if communicating in binary with 
a computer, he calculated that One would takeover 4.5 trillion symbols to 
define. A. Mathias (2002) A term length of 4,523,659,424,929. Synthese 133 
p.75-86.

25. phrases which appear to stand for these things are incomplete sym-
bols: F. Ramsey (1922) Truth and simplicity. British Journal for the Philosophy 
of Science (2007) 58 p.379-386.

26. approximately 20 million primitive logical inferences in this proof: 
T. Hales (2007) The Jordan curve theorem, formally and informally. The 
Mathematical Association of America Monthly 114 p.883. Online 8/18 at https://
pdfs.semanticscholar.org/70ab/0431a8d59e1cd9147b54c5e99883a54190a1.pdf

27. when the range of the first transformation is the domain of the second: 
B. Mazur (2007) When is one thing equal to some other thing? Online 4/18 
at http://www.math.harvard.edu/~mazur/preprints/when_is_one.pdf

28. visually accessible arguments to explain the truths of elementary 
complex analysis: T. Needham (1999) Visual Complex Analysis p.vii.

29. the existence of objects or procedures that we cannot see, specify, or 
implement: N. Wildberger (2005) Set theory: should you believe? Online 
10/18 at http://web.maths.unsw.edu.au/~norman/views2.htm
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30. serve, by themselves, to express many propositions: L. Couturat 
(1905) The Algebra of Logic L.G. Robinson (trans. 1914). From the Preface 
by P. Jourdain p.i.

31. the relations between them directly (without the intermediary of 
words): Couturat p.ii.

32. just as the Egyptians once did and as the Chinese do today: L. 
Couturat (1901) The Logic of Leibniz Ch 4. p.18. footnote 101 quoting Leibniz 
(§90; Phil., IV, 73; Math., V, 50). Online 8/18 (in French) at https://babel.
hathitrust.org/cgi/pt?id=ien.35556036601318;view=1up;seq=1

33. using 1 for the identity of multiplication is indexical: J. Goguen (1993) 
On notation. In. B. Magnusson, B. Meyer & J-F. Perrot (eds.) TOOLS 10: 
Technology of Object-oriented Languages and Systems p.5-10.

34. hiding that iconicity is harmful to students trying to learn mathe-
matics: Goguen p.5-10.

35. Mathematics is syntax, and syntax is mathematics itself: E. Nelson 
(2002) Syntax and semantics. Presented to the International Conference: 
Foundations and the Ontological Quest. Prospects for the New Millennium p.5. Online 
8/18 at https://web.math.princeton.edu/~nelson/papers/s.pdf

36. mathematics is simply formulas and proofs themselves, as strings of 
symbols: Nelson  p.6. 

37. and infer that there must therefore be an infinity of numbers: P. 
Maddy (2014) A second philosophy of arithmetic. The Review of Symbolic 
Logic 7(2) p.234. Quoting P. Bloom (2000) How Children Learn the Meanings of 
Words p.238. Online 8/18 at http://www.socsci.uci.edu/~pjmaddy/bio/arithmetic%20
in%20RSL.pdf
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Volume I presents two iconic approaches to the rep-
resentation of the formal structure of arithmetic. It 

also serves as an introduction to a different way of think-
ing about formality. This volume compares the iconic 
concepts embodied in James algebra to those of string-
based numerics. As we will see in the next volume, James 
forms also include structures that behave like imaginary 
numbers and those that behave like infinity. These forms 
arise naturally out of the three James axioms and require 
no additional transformational mechanism, with the 
exception that we will need to add a fourth axiom to be 
able to reduce the many forms that act like infinity.

Postsymbolism introduces representational freedom without 
the loss of formality or expressibility. Iconic form permits 
many new families of representation that allow us to 
directly see and interact with the abstract concepts of logic 
and arithmetic. These new ways of thinking are intended to 
greatly simplify elementary mathematics. Our audience is 
grade school students.2 However the iconic innovations are 

We live in an era of number’s despotism:  
thought yields to the law of denumerable multiplicities; 

and yet...we have at our disposal no recent, 
active idea of what number is.1 

— Alain Badiou (2008)

Connection

  Chapter 30 
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very unfamiliar, a barrier unlikely to be torn down due to 
the universal acceptance of textual expressions as vehicles 
for the formal concepts described in Chapter 24. Iconic 
formalism is making progress in calculus since many of the 
concepts within calculus have traditionally been associated 
with Cartesian graphs, surfaces and objects of rotation, 
visualizations of trajectory and flow, and other physical 
applications. Although void is identified as a valuable tool 
for solving equations in Chapters 17 and 18, I cannot over-
emphasize the impact of void-equivalent forms. Within our 
culture void is abhorred by religion, Nature and typography. 
And yet it is this absent foundation that permits iconic form 
to flourish, as exemplified in Chapter 20.

30.1  Cognition
Our endeavor is guided by two fundamental perspectives 
about the nature of reality, that nothing is not something 
and that all things are unique unless we have elected 
explicitly to ignore differences. Our entire exploration 
centers around the nature of difference. And difference 
is not within the physical realm, it is purely mind stuff. 
Gregory Bateson delineates the essential characteristics 
of difference:3

— Difference is not material and cannot be localized.
— Difference cannot be placed in time.
— Difference is not a quantity. It is dimensionless 

and, for sense organs, digital.
— Information is news of difference. It is not energy.

We harness abstraction by making it concrete, only to 
discover that concrete form itself is a difference that our 
perceptions impose in support of abstract thought. 

Containers are a physical envisionment of cognitive dis-
tinctions. A distinction constructs a difference. Since 
difference is not a physical quality, distinction is a purely 
cognitive act. Difference is the way that our senses con-
struct order out of an essentially undifferentiated reality.4 
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Cognitive distinction constructs boundaries to create 
forms. The boundary can be as simple as a label, as cat-
egoric as an arbitrary property or as physical as a tree. 
Identifying a label or a property or an apparently discrete 
physical object creates a relation between the labeler and 
the labeled. The relation we have been calling containment 
is between object and environment, not between objects 
within a shared environment. Containers themselves can-
not be separated from their inside and their outside. The 
One comes only as Three. It is our choice of perspective 
that defines what is inside and what is outside.

The concept we have been calling distinction is a recog-
nition that it is difference that counts, and that what we 
consider to be the same is our unique personal choice. 
The mathematical language of axioms and theorems and 
transformations is a rigorously structured microcosm 
that allows us to practice with safety what is truly real. 
Postsymbolism seeks to explicitly enrich that microcosm.

An individual’s world is the dynamic network of distinc-
tions that person is constructing at the time. Distinction 
network (dnet) then is both the name of the graphic 
display of containment relations and the name of the 
cognitive construction that the containment relations 
represent. The primary difference is one of degree of 
interconnectivity. The dnets used herein to describe arith-
metic are a tiny slice of a cognitive perspective. In a sense, 
mathematical philosophy is an exploration of different 
slices of our cognitive dnets, networks that have already 
be radically partitioned by the agreed upon distinctions 
that define mathematics. There is a Platonic reality, but it 
is unique to each individual. Although mathematical for-
malism seeks to greatly constrain that uniqueness, it is 
apparent that there is little agreement within mathemat-
ical philosophy about which constraints are appropriate. 
However, so long as mathematics embraces disembodi-
ment it is isolating itself from the roots of its creation and 
thus embracing an unintelligible philosophy.
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30.2  Last Century
From a formal perspective, what we believe to be num-
bers and arithmetic was established during the early 
twentieth century, as presented in Chapter 22. But as 
the opening quotes from John Bell in Chapter 23, from 
Bertrand Russell in Chapter 24, from Carl Sandburg in 
Chapter 25 and from Alain Badiou in this chapter testify, 
we are still very far from understanding what number 
and its arithmetic is.

In this volume, we have explored many of the founding 
concepts and strategies employed to define formal numer-
ics. We have deconstructed equality, induction, set theory, 
logic, functional thinking and symbolic representation 
in an attempt to identify how and why iconic arithmetic 
is different. A minor objective in this effort is to dis-
suade conventional mathematics from its predilection of 
degrading iconic form to an isomorphism with linguistic 
expressions. It is a startlingly narrow perspective to insist 
that representation is independent of meaning, and worse, 
independent of formal thinking. One great learning over 
the last fifty years is that concept is embodied, it does 
not exist separate from homo sapiens. We have met our 
ideas and they are us. This is not to suggest that concept 
is anchored to physical manifestation. But we no longer 
need to project great thoughts outward to an unknown 
and unknowable Agent in the sky. Here is cybernetician 
Francisco Varela:

The proper units of knowledge are primarily con-
crete, embodied, incorporated, lived.... The concrete 
is not a step toward something else; it is both where 
we are and how we get to where we will be.

The structure of mathematics is inseparable from the 
structure of our cognitive distinctions. Both are non-phys-
ical and both are irrevocably anchored to experience. 

design choices 
depend upon 

notation
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30.3  Computational Perspective
Chapter 25 declares that the perspective of James alge-
bra is computational, specifically Hilbert’s ideas that 
mathematics is both structural and operationally finite 
(Chapter 21). A more modern perspective, which is 
expressed in Chapter 27, is ultrafinitism, that the type 
of mathematics that is meaningful to a computer scientist 
is that which can be done using an algorithmic strategy 
with time constraints limited to the life of the universe. 
Another description of this position is computational 
pragmatism. 

Chapter 23 introduces Primitive Recursive Arithmetic 
(PRA), a minimalist foundation that is supported by 
Friedman and Feferman as sufficient for pragmatic 
mathematics. In the late 1930s, prior to the domination 
of silicon computers, several different academic cultures 
converged in understanding that they each had been 
addressing the same formal concepts from different 
perspectives. This understanding is the Church-Turing 
Thesis. Kurt Gödel and Jacques Herbrand pioneered 
what later became PRA. Herbrand, following closely in 
Hilbert’s footsteps, developed the equational formulation 
of PRA. Alonzo Church and Stephen Kleene developed 
the lambda calculus, a system based on substitution and 
abstraction. Alan Turing developed Turing machines, 
a formal specification of what a computer can do. And 
Emil Post demonstrated that string rewriting systems 
too were equivalent to PRA, lambda-calculus and Turing 
machines.

Church-Turing Thesis

All reasonable formulations of the intuitive notion 
of effective computability are equivalent.

This convergence then guided the development of soft-
ware programming languages which provide formal 
specifications of what is computable. 
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The most recent advocacy of the computational perspec-
tive is Stephen Wolfram’s fundamental theorem in 2002, 
which arose from his study of cellular automata, a vastly 
different computational approach with strong local fine-
grained parallelism and with simple accumulation rules 
determined by the state of adjacent neighbors within 
an unlimited discrete array. The distinction networks 
described in Chapter 29 are, by design, similar but with 
containment relations defining the meaning of adjacency 
between neighbors. 

Principle of Computational Equivalence

Almost all processes that are not obviously simple can be 
viewed as computations of equivalent sophistication.6

The Principle of Computational Equivalence widens the 
Church-Turing Thesis beyond computation to laws and 
processes of Nature across all varieties of machines and 
brains. Stephen Wolfram:

No system can ever carry out explicit computations 
that are more sophisticated than those carried out by 
systems like cellular automata and Turing machines.7

The implication is that formal processes, those that we 
understand as embodied in computers and thoughts, 
are universal. The gauntlet thus thrown is that infinite 
mathematics, the kind used by almost all pure mathema-
ticians, is not realizable. This certainly does not suggest 
that the concept of infinity is not valuable or worthwhile, 
in developing approximate models for example and in 
explaining how some models break down. But to be 
useful, for measurement in particular, infinite models 
need to be scaled to conform with what we have been 
describing as ultrafinitism. Specifically to qualify as 
science, mathematical theories should be bounded, local 
and determinate.8 Areas of mathematics that do not qual-
ify as computable include real numbers, infinity, ZFC 
set theory, existence proofs and void. Even comfortable 
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transcendental concepts such as π and e do not qualify 
as exact numbers. In Volume III we will be able to iden-
tify the specific structures within James algebra that 
step outside of computability. Iconic mathematics can 
embrace both computable and non-computable structures 
and clearly identify which is which.

Modern study of the non-computable came hand-in-hand 
with the Church-Turing thesis. It is relatively easy to 
identify what a computer cannot do. The archetype is 
the Halting Problem: a computer cannot tell you when it 
will finish a computation. Obviously neither can another 
computer observing that computation. Both cellular 
automata and dynamic systems have exposed deter-
ministic processes that are immune to abstraction. These 
chaotic processes are formal but cannot be simplified or 
predicted. The only way to know what will happen next is 
to carry out the process. And yet they are simple iterative 
algorithmic processes that fall well within PRA. These 
processes are reversible, include nothing random or prob-
abilistic, and are not knowable but through experience. 
There are a plethora of examples for which a computation 
cannot tell us about upcoming results except by taking 
all of the steps to reach those results. Applied to human 
experience, Tor Norretranders observes

There are no principal universal logical rules that 
tell us anything we did not already know. The 
Church-Turing thesis and Turing’s halting problem 
tell us that we can learn nothing unless it is through 
experience.9

Bluntly, knowledge must be embodied. Iconic math merely 
attempts to provide a more consistent formal representa-
tion, one that aligns with the structure of cognition. In 
this volume, distinction networks have converged with 
whole numbers to provide what Charles Peirce identifies 
as the form of formal thought.
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30.4  Beyond Arithmetic
As we will see in Volume III, we can call a container 
“infinity” and still manipulate it directly, even though 
we are associating a concrete object with a very abstract 
concept. This finesse has an unexpected consequence. 
We may find that what we believe to be abstract is actu-
ally within reach. The creations of our imagination may 
indeed be unreachable, but for entirely different reasons 
other than their abstraction. Infinity can be as concrete 
as One.

For whatever reasons, we have designed here a numeric 
arithmetic that accumulates while insisting that only 
numeric forms can accumulate. Infinity can exist but 
cannot accumulate, while accumulating void is an absur-
dity. Thus both [ ] and void are non-numeric. We have 
accepted two types of existence (round and square) and 
constrained their interaction with three axioms or beliefs. 
Given this belief structure, we rigorously limited our con-
ceptual and structural tools to those permitted by the 
axioms. Well, and one additional tool, the idea of equality 
abstracted as the Composition Principle and implemented 
as pattern-matching and substitution. Some forms may 
look different but we construct beliefs that define them 
to be the same. Thus axioms guide us into complexity 
by expanding identity into equality. A pattern-matcher 
can provide search and recognition, but not construction. 
For that we need a substitution-engine that must perform 
exacting surgery on existent forms and thus create per-
mitted structural variety without creating monster forms 
that change their equivalence class.

We have pursued two themes that do not negate our 
understanding of arithmetic but rather that attempt to 
expand its conceptualization. To embrace an unified 
reality, to see interaction, connectivity and feedback as 
essential to an understanding of numbers, concurrency 
as described in Chapter 19 is mandatory. Dedekind and 
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Badiou envision our numbers as a unified whole, not as 
separate objects. To do so requires seeing them all at the 
same time, not visiting them one by one as encouraged by 
Peano’s successor function and by today’s fragmentary 
preschool educational practices described as “learning to 
count”. Children need to learn first the cybernetic unity 
required for an appreciation not only of ecologies but 
also of social interaction. To combat prejudice we need 
to practice defining our world not by the properties of 
objects but by the network of connectivity that unifies 
object and environment. 

The second theme is to reunite cognition with our bodies. 
What Chapter 26 calls postsymbolism is more than a 
visual and experiential approach to numbers, it is also an 
attempt to develop a deeper respect for the human being 
as constituted within a human body. The abstinence from 
sets and logic and functions described in Chapter 27 and 
Chapter 28 is based not only on coming to understand 
arithmetic better, it is also coming to understand social 
and cultural reality better by appreciating uniqueness 
rather than by collecting reality into sets defined by the 
properties of objects; by embracing contradiction and 
context rather than fabricating the dream that people 
should be rational; and by seeing feedback and evolution 
as the source of what we identify as structure rather than 
encouraging our senses to fracture cybernetic networks 
into input/output processes that distort both time and 
place.

30.5  Structure in Volume III
The content of Volume III has been mentioned inciden-
tally many times. One reason for this is that the content 
grew beyond the space available in this volume. Although 
not disconnected from the ongoing exploration, three 
major aspects of James arithmetic have been exiled into 
Volume III. 
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Infinite Forms
The James form (<[ ]>) is stable and can be interpreted 
as 1/0. Stable forms are grounds that are the constants 
of a formal system. Embedded within the James notation 
are forms of what might be called infinity, although that 
description relies upon our interpretation of these forms. 
It is a comfortable description because throughout history 
1/0 has been associated with ∞. The empty square-
bracket, [ ], is a non-accumulating, non-numeric unit that 
lies within the deepest level of all existent non-numeric 
James forms. (Void-equivalent forms are also non-nu-
meric and rely upon a completely different mechanism: 
they are non-numeric and non-existent.) We will explore 
the unifying influence that [ ] has upon many of the 
infinite, banned and exceptional expressions within sym-
bolic arithmetic. From our new perspective, infinite and 
indeterminate expressions can be identified by specific 
James structures and integrated within numeric arith-
metic to eliminate the confusion currently associated 

Figure 30-1:  Theorems of [ ] and <[ ]> (Figure 41-2)

AXIOMS
   [ ]  [ ]   ⇒   [ ]       unify
  <[ ]><[ ]> ⇒   <[ ]>      unify II

   [ ] <[ ]> ⇒ indeterminate     indeterminacy

 (<[[ ]]>) ≠ void       infinitesimal

HYBRID AXIOM

 (<[ ]>) = <[ ]> = [<[ ]>]    infinite interpretation

THEOREMS
 (A  [ ] ) = ( [ ] ) = void    dominion
 (A <[ ]>) = (<[ ]>)      dominion II
 (A [[ ]]) =   [ ]      dominion III
    [[ ]]  = J <[ ]>      double-square
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with computational exceptions. Figure 30-1 shows the 
structural forms and transformations in Volume III that 
derive from forms containing [ ] after reduction. We will 
be able to explore not only infinite expressions but other 
exotics such as infinite powers, infinitesimals, indetermi-
nate variables, unresolvable forms, and logarithms with 
base 1, 0 and ∞.

Differential Forms
Closely connected to infinite expressions are the topics 
of limit theory and the calculus of derivatives. Volume 
III takes our first excursion past algebra to explore ele-
mentary differential calculus. Figure 30-2 shows the 
structure of the derivatives of James boundaries. As is 
typical of each of our James explorations, some remark-
able structural regularities emerge. 

Imaginary Forms
One of the most remarkable contributions of the study 
of James algebra is the stable form [<( )>], named J, 
which can be interpreted as log#–1. J is structurally 
numeric, as can be seen by the innermost round-bracket. 
It cycles in value with a phase of 2. When two J forms 

Figure 30-2:  Derivatives of James boundaries (Figure 37-2)

 name    derivative    ☞   interpretation

  constant  dc   = void        dc       =  0 

  variable  dx   =  o       dx       =  1

  power   d(u) = (  u  [du])    d#u      = #u (ln #) du
  logarithm d[u] = (<[u]>[du])    d(log# u)  = 1/(u ln #) du
  inverse  d<u> =  <du>      d(–u)    = –du

  sum   d〔u v〕 = 〔du dv〕     d(u+v)   = du + dv
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accumulate, they return to void. The imaginary unit i 
has four phases in exponential space. As a logarithm J 
shares this exponential space with i. In Volume III we’ll 
show that i can be decomposed into J. That is, i is not 
the fundamental imaginary unit, it is one-half of J. The 
precise relation is

  i  ☞  (J/2) = (( [J]<[2]>)) 
      J    =  ([[i]][2] )  = [i][i]

J is the sum of two logarithms of i.10 To express this in 
exotic symbolism
       log# –1 = log# i + log# i

Figure 30-3:  J patterns and transformations (Figure 34-2)

J THEOREMS

  J = [<o>]        definition of J
  <A> = (J [A])       J-conversion

  J J = void        J-void object
    [<(J)>] = void        J-void process
  ([J][oo]) = void       J-void tally

  J = <J>         J-self-inverse

  [<(A)>] = A J       J-transparency
  A (J [A]) = void      J-occlusion
  J (J [J]) = void      J-self-occlusion

  J = <[A]>[<A>]       J-invariant
  [<J>] = J [J]       J-absorption
  <(J/2)> = (<J/2>)      J/2-toggle

COMPLEX NUMBERS

  i  ☞   (J/2 [o])    form of i
  π  ☞   (J/2 [J])    form of π
 a + bi  ☞ a (J/2 [b])    form of complex numbers
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Thus J provides a third variety of accumulation.

  ( )( ) ≠ ( )  numeric accumulation
  [ ][ ] ⇒ [ ]  unification
   J  J  = void  cyclic accumulation

Figure 30-3 shows what to expect from the exploration 
of the structural relations of J. Since J is within numeric 
James algebra, there are no new axioms, just several new 
theorems that with familiarity provide an entirely differ-
ent perspective on imaginary numbers. As an operator, 
J also provides a new perspective on the operations of 
arithmetic, since any form with an angle-bracket can be 
expressed as a J-form. For example,

  i2 = –1   ☞   <o> 
      ([<o>])
      (  J  )   ☞  #J

It is –1 that is the mother of imaginary numbers, not i 
and not J. The broadly useful angle-bracket that stands 
in place of conventional inverse functions can itself be 
replaced by the single constant J. James algebra then 
consists of two mutually canceling bracket types and a 
constant.

One final example. Euler’s famous equation, eiπ + 1 = 0, is 
reputed to be mysterious yet we can derive it directly in a 
base-free form from –1 and the theorems in Figure 30-3. 
We first demonstrate that J = –iπ. In mixed notation,

 <J> = (        J         [J]  )
       (  J/2         J/2 [J]  )
       ([(J/2 [o])] [(J/2 [J])])  ☞ iπ
From above, 
     –1 = #J = #–iπ 
      #–iπ + 1 = 0
let  # = 1/e    e iπ + 1 = 0 

enfold

substitute

J-conversion

substitute

enfold
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30.6  Remarks
Spencer Brown’s book Laws of Form is seminal for ground-
ing the formal theory of distinctions. He presented an iconic 
form for logic, as did Peirce. Here we have presented a pos-
sible iconic form for numbers. We next step into the deep 
end of this pool of thought, to explore the non-numeric and 
imaginary James forms. Volume III provides the structure 
and interpretation of forms that redefine Accumulation to 
generate imaginaries, indeterminates and infinities. These 
unexpected forms are entirely natural, arising solely from 
the three numeric James axioms. There is nothing more 
but to explore the consequences.
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Endnotes
1. opening quote: A. Badiou (2008) Number and Numbers p.1.

2. Our audience is grade school students: Several pilot projects are under-
way to introduce iconic thinking into the classroom. Past second grade, 
though, the utter dominance of textual form both in required curriculum 
and in the training of mathematics teachers makes traction nearly impos-
sible. Even Euclidean geometry is being removed from the curriculum in 
the United States, both by suppressing visualization techniques and by 
converting geometry into exercises in symbolic logic proofs. Only a few 
experimental high school instructors who manage to mix “art” with “math” 
have succeeded in introducing symmetry, fractals, cellular automata, and 
information visualization into their math classrooms. 

For pioneering work introducing Spencer Brown’s Laws of Form and iconic 
algebra into the classroom, see

W. Bricken (1987) Analyzing Errors in Elementary Mathematics. Doctoral dis-
sertation, Stanford School of Education.

W. Winn & W. Bricken (1992) Designing Virtual Worlds for Use in 
Mathematics Education: The Example of Experiential Algebra. Educational 
Technology 32(12) p.12-19. Online 12/18 at http://wbricken.com/pdfs/03words/03ed-
ucation/03iconic-math/07worlds-for-math.pdf

W. Bricken (2007) Presentation at WSMC07. Online 12/18 at http://wbricken.
com/htmls/03words/0303ed/030305spacearith.html

M. Klein & O. Pelz (2018) No Box Today. Online 12/18 at https://www.
noboxtoday.com/ 

3. delineates the essential characteristics of difference: G. Bateson (1991) 
A Sacred Unity p.219. Online 8/18 at https://monoskop.org/images/c/c3/Bateson_
Gregory_Mind_and_Nature.pdf

4. our senses construct order out of an essentially undifferentiated real-
ity: When I look outside my window I see the yard covered in grass and an 
apparently different object, a tree. They are different because I have made 
cognitive distinctions to see them as different. They are the same when I 
make the distinction “where I live”. They are also the same underground, 
out-of-sight where roots entwine to share water and nutrients. Tree and 
grass belong to the same Plant kingdom, we differentiate them both from 
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creatures that change location within the time frame of our perceptions. 
Trees and plants do travel by a different mechanism, that of spreading seeds. 
The mycelial networks that connect the roots of trees to one another abolish 
the difference not only between what we see as individual trees,  but also 
what we believe to be the different kingdoms of life. Plants and fungi are 
literally One. Reality is undifferentiated until we construct differences and 
then ignore them into similarities. 

The cybernetic concept is umwelt, loosely the coupling between world and 
cognition that is the source of distinction. The distinctions we make are cou-
pled to our physical capabilities. The dog in the yard is making fundamentally 
different distinctions based on his superb ability to smell. The honey bee 
differentiates flowers, not plants. The hummingbird is not bound by gravity. 
What is is what physiology and cognition construct as relevant differences. 

5. and how we get to where we will be: F. Varela (1992) Ethical Know-How: 
Action, Wisdom, and Cognition p.7. (Emphasis in original.) Online 8/18 at 
https://www.heartoftheart.org/wp-content/uploads/2017/08/Varela-F.-J.-1999-Ethical-

know-how.-Action-wisdom-and-cognition-2119.pdf

6. viewed as computations of equivalent sophistication: S. Wolfram (2002) 
A New Kind of Science p.716-717. Online 8/18 at https://www.wolframscience.com/nks/

7. by systems like cellular automata and Turing machines: Wolfram p.720.

8. mathematical theories should be bounded, local, and determinate: The 
ultrafinitist perspective would be that the use of infinite tools just identifies 
an immature science. In physics renormalization techniques have been devel-
oped to eliminate infinite “quantities” that arise during calculation. We do 
still have, though, singularities such as black holes that appear to step outside 
of boundedness. Again the ultrafinitist position would be that these are 
phenomena that we can describe only approximately, via an infinite model 
that is necessary due to a lack of complete understanding.

9. we can learn nothing unless it is through experience: T. Norretranders 
(1998) The User Illusion p.57.

10. J is the sum of two logarithms of i: This observation leads to an 
interesting math problem: Find the value of x in this equation. x is not zero.

x + x = 0
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TYPOGRAPHIC  DELIMITERS
 bracket   name          use       chapters

JAMES  ALGEBRA

 o, ( )   round      numeric, exponential        all
  [ ]   square     non-numeric, logarithmic        all
  < >   angle      reflection, inverse         all
  〔 〕   shell      void-equivalent outermost     18, 20, 28
  { }   curly      generic boundary      18, 24, 27, 29
  〘 〙   double shell    substitution operator      16, 18, 23-25,
                     27, 28
  〈 〉   large angle    logic, not numeric      28, 29
			［ ］   double square   two-boundary system     20

TEXTUAL  MATHEMATICS

  ( )   parenthesis    textual scoping         all
  [ ]   bracket     function arguments    19, 23
  { }   brace      set delimiter      16-17, 20, 22,
                     26, 27
  ≲ ≳   double angle    equivalence class     17, 24

        INCIDENTAL                                page
        cross , mark    LoF distinction      xxvi
  « »	   large double angle  two-boundary alternative      124
  〔 〕   shell      semantic oscillation     125-126
  “ ”	   quotation mark   string expression      191
			［ ］   double bracket   equality        350
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FIGURE 16–1  Summary of definitions, axioms and theorems        3

FIGURE 16–2 Comparison of concepts       13

FIGURE 18–1  Operations across equality      59

FIGURE 21–1   James axioms and principles for arithmetic     134

FIGURE 25–2  Substitution       243
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BUMPER  STICKERS

Almost all math is silicon computation.      xxiii
Putting tallies together defines addition.          1
Void has no structure.            6
Forms are unique precisely because they are not other forms.       6
Forms interact only with their container and with nothing else.       7
A representation resembles what it means.          7
A boundary is a distinction, nothing more.         7
To describe is to make complex.           9
Mathematics is devoid of reference and meaning.       10
A number is what it does.         11
Structural equivalence is defined by permitted transformations.     25
Axioms degrade inequality.         25
Almost all existent forms are different.        28
Shared properties belong to the environment.       32
Something is not nothing.          33
A form is equivalent to itself.         35
Equality is about structure rather than objects.       38
Equivalence is a journey quantized by transformation steps.     44
There are sufficient natural numbers for any purpose.      80
A number is part of a system of mutually dependent relations.     82
Self-similarity permits concurrency.        87
Truth is applied form dynamics.       132
Abstraction is an approximation of experience.    139
Counting can both verify and undermine truth.    142
Cardinality is independent of counting.     163
Infinite sets contain themselves.      164
Even whole numbers can get too big.     203
Forms do not cross outermost distinction boundaries.   216
Pattern-matching and substitution are at the foundation of mathematics. 232
What is not explicitly allowed is forbidden.    234
Spatial visualization is the native vocabulary of rational thinking.  272
There is no property common to all natural numbers.   307
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Symbolic arithmetic is a belief system.

The arithmetic we are taught was designed
before film, before TV, before music videos, before smart phones.

Our media are coupled to how we think and what we do. 
Symbolic abstraction is too detached for this century.

Postsymbolism reintegrates our bodies and our minds.
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need to evolve to incorporate 
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Concept is embodied, concrete, incorporated, lived.
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VOLUME II

Postsymbolism reintegrates our bodies and our minds.

Sets and logic and functional thinking 
need to evolve to incorporate

global unity and ecological diversity.

Concept is embodied, concrete, incorporated, lived.
Meaning comes from experience.

Arithmetic is multisensory pattern.

Symbolic arithmetic is a belief system. 

�e arithmetic we are taught was designed
before �lm, before TV, before music videos, before smart phones.

Our media are coupled to how we think and what we do.
Symbolic abstraction is too detached for this century.
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