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The last thing one knows when writing a book is 
what to put first.

— Blaise Pascal (1670) Pensées

Preface

Perhaps it’s not particularly good form to begin with a confession, 
however: This volume is a preamble. My original intention was to explore 

iconic logic. I‘ve elected to write first about arithmetic because not many 
people are familiar with symbolic logic. Boundary logic might be of interest 
to only a few and would risk putting the perspectives of iconic mathematics 
out of reach for many, particularly mathematics educators who rarely see 
logic within their standard curriculum.  Arithmetic however no one escapes, 
not even preschoolers.

Formal logic has been cherished by Western culture as the way that the mind 
works. Supposedly, critical thinking is built upon logical, rational, formal think-
ing. Turns out that formal symbol systems have absolutely no correspondence 
to the way our minds actually work. Human dialogue and human values thor-
oughly embrace ambiguity, allusion, uniqueness, invention, emotion, multiple 
entendre, and at times, lawlessness. Studying logic is an arduous excursion 
into successive abandonment of the biological evolution of human cognition. 
Few understand how logic arises from nothing, or why we see binary values 
within an essentially unary form, or how imposed rigor completely avoids 
temporal and causal and sensual and social and situated information. Given 
the fundamental role that logic has played in intellectual history, yes our topic 
should be postsymbolic unary logic. I confess to taking the road more traveled. 
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George Spencer Brown’s seminal work on iconic mathematics, Laws of Form, 
succinctly describes the structural foundations of mathematical thought. 
This volume is permeated with Spencer Brown’s thinking and mathematical 
wisdom. His text is notorious. The academic analysis, enthusiasm, contro-
versy and rejection of Spencer Brown’s work is widely based on a severe 
misunderstanding that Laws of Form describes conventional logic, which 
it does not. The text becomes much more controversial when it is taken for 
what it actually is: a postsymbolic foundation for rigorous thinking. 

To understand the foundation of mathematics 
it is necessary to abandon 

the symbolic representation of mathematics.

I’ve spent over three decades working professionally with boundary logic, 
yet this volume explores boundary arithmetic. Well, these volumes. Here’s 
a second confession: in order to finish this volume, I had to keep spinning 
off chapters into secondary storage. The first to go into a separate container 
was The Story of J, which is [<( )>] when written as a James boundary 
form. J stands out whenever we do a particular kind of numeric thinking, 
one that postulates the existence of –1. The form of J exposes the conse-
quences that follow when we imagine the possibility of bipolar units.

With J in its own volume, protecting if you will the rest of numerics from its 
influence, the content that remains weaves together two themes. There’s what 
happens to common symbolic math when it is expressed within a postsym-
bolic perspective. And there’s, um, how we might think about what happens. 
There is a What! theme and a Whaaat? theme. Both got too big, so the 
beast split again. Volume I explores the iconic form of arithmetic. Volume 
II explores the interface between iconic arithmetic and some of our current 
models of and ideas about mathematics. 

Volume I begins with marks drawn in sand, with pebbles held in hand, with 
notches carved in bone, with unity standing alone. The tally system has 
been around longer than civilization. Its one-to-one correspondence anchors 
the birth of mathematical thought. Unit-ensemble arithmetic provides the 
first step toward calculation. Very early in our civilization, humans living 
in city-states put tallies into groups. These groupings eventually became 
digits. Throughout most of recorded history counting to determine how 
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many was a specialist skill. A cupful of beans did not elicit a desire to 
know how many beans. Numbers were magical icons, only recently do we 
count. Symbolic arithmetic focuses our attention on the beans, postsymbolic 
arithmetic focuses on the cup. 

Strangely, the accumulation of tallies also gives birth to creatures that are 
not numbers. Non-numeric forms make an early and unavoidable appear-
ance. We are left to contend with the realization that numeric form itself 
is a subjective imposition upon a broader terrain. Mathematics is about 
pattern, not number. Volume I builds arithmetic from a single pattern, that 
of containment. The non-numeric creatures have been exiled to Volume III.

OK, a third and final confession:  it is with trepidation that I comment 
upon technical masterpieces in the philosophy of mathematics since I’m 
not a mathematician, have practiced very little abstract math, and have 
taught even less. I’m a computer scientist. Computer Science is a sister field 
to mathematics. The structural content it addresses creates a substantively 
different world-view about symbolic expression and about mathematical 
abstraction. Volume II particularly stretches into content that I’ve studied for 
decades and I still struggle to understand.  How, for example, is it possible 
to separate form from function? How can rigor be independent of reality?  
How can information be context-free? How can we believe that thinking 
does not incorporate our senses? How can we pretend that there is a Platonic 
virtual reality that only our minds can access?

How can any human say that a computer has human characteristics?  
Computation is quite antithetical to organic existence. Neither does com-
putation trespass into the purely imaginary realms of the infinite. Just like 
us, computing is embodied, but in a silicon housing that is far from biological. 
An algorithm has no access to the stuff that dreams are made of. It cannot 
think, it cannot make distinctions. The Turing test is a direct measure of 
human gullibility.

I began this project about a decade ago (in the ohohs), in a quite technical 
vein, wondering whether or not the axiomatic method developed for formal 
symbol systems could be applied to the simplest tallies used by humanity 
for thousands of years. Some of this work turned into Chapters 2, 3 and 4. 
But the motivation arose from a project a decade earlier (the 1990s if you 
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are keeping track). I was working at Interval Research Corporation, Paul 
Allen’s Silicon Valley research lab, with my long-time intellectual compan-
ion, Dick Shoup, and a team of inventive scientists including Tom Etter, 
Fred Furtek and Andrew Singer. Jeffrey James was also on the team for 
several years, contributing significantly to proof of principle. The Natural 
Computing Project was tasked with this challenge:  if you could redesign 
computing from the ground up, without any consideration for what already 
exists, what would you build? Dick and I were both theoretical computer 
scientists interested in foundations, and we both believed that software 
languages were terribly impoverished, not because they failed to get a CPU 
to jump through hoops, but because they were built upon baroque math-
ematical presumptions. Natural Computing developed several alternative 
mathematics for computation including Shoup’s Imaginary Booleans, Etter’s 
Link Theory, Furtek’s Torics Dynamic Constraints, and a diversity of sup-
porting FPGA hardware architectures.

Together, Dick and I had both studied George Spencer Brown’s seminal 
work a decade earlier. We understood Spencer Brown’s iconic forms not as 
a path to Eastern philosophy, but as a tool for designing and writing better 
software languages and for building better computational hardware. During 
the 80s I met Professor Louis Kauffman. Lou’s work conceptually extends 
Laws of Form and I’ve studied everything he has written. He inspired me 
to explore rigor creatively; his influence also permeates the mathematical 
content of this volume. Lou’s development of iconic forms for iterated func-
tions, for continued fractions, and for anti-boundaries such as )(, which he 
calls extainers, are excellent extensions of boundary thinking.

I came across Laws of Form a decade even earlier (the 1970s), guided by 
Stewart Brand’s review and Heinz vonFoerster’s commentary in The Whole 
Earth Catalog.  At that time I was building a home in the forests of Hawaii, 
and had plenty of time to think about abstraction as I hauled lumber up a hill 
and pounded 200,000 nails to hold it all together. The unary logic in Laws of 
Form abandons Truth to Existence, a position that seemed quite reasonable 
to someone who was living in a forest. One day my mother showed up with 
a copy of Laws of Form, saying that she understood nothing inside, but it 
had literally jumped off the bookstore shelf as she passed by and landed at 
her feet. She thought it looked like something I might find interesting. Turns 
out, I’d been reflecting upon Crossing and Calling without the text for over 
a year. And I knew not to ignore Jungian synchronicity. 
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Before becoming a software language designer, a decade before those other 
decades, I was first a teacher, and that’s how I earned a living in Hawaii. 
The very first version of this volume turned into an extended rant about 
the state of math education in the USA. I was looking for better ways 
to construct respectful learning environments for growing children and 
had hoped that taking some of the cruft out of algebra might help. After 
a few hundred pages of analysis and criticism and ranting, it became 
obvious that math education is just too easy a target; it is too deeply 
flawed to justify the effort and the sincerity of a book. Criticism of edu-
cational practice implied that I should have been interested in helping to 
improve educational environments, and that was no longer the case. I had 
discovered a decade earlier still that learning is not within the charter of 
educational bureaucracy. A school is a place where three or more younger 
people meet with a state certified older person during specified daylight 
hours. That’s it. I lost interest in schooling just like the Department of 
Education had lost interest in learning. 

I spent the 80s learning CS and AI and ML and VR and UI and CAD and 
how to talk in acronyms, while becoming proficient in the design of computer 
languages. I viewed every formal discipline through the lens of boundary 
mathematics, bouncing ideas and perspectives off of several of the luminaries 
in Silicon Valley and every one of my professors at Stanford. A dear friend 
Daniel Shapiro shared many of these avenues of exploration, and both of 
us edited what the other wrote. My dissertation in part compared the error 
affordance of conventional and boundary notations for seventh grade algebra 
students. Net result is that algebra errors made by novices are contextual 
rather than symbolic, afforded rather than misguided.

We had better unwind. Experience in education led to interest in experiential 
learning which led to living in a forest which led to embodied math which led 
to Spencer Brown which led to a Ph.D. about symbolic thinking which led 
to our group at Interval, protected from the vagaries of underfunded insti-
tutions, trying to improve the foundations of computational mathematics. 
One result might be unexpected: our culture’s time-honored and universally 
accepted place-value number system is not the only way to count, it is not 
necessarily the best way to do arithmetic, it is not even well designed.
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Iconic math is rigorous thinking that looks and feels like what it is intended 
to mean. Postsymbolic thought is embodied experience. Our topic for the 
moment then is the deconstruction of common arithmetic based on the formal 
principles first developed by Spencer Brown, with the American philosopher 
Charles S. Peirce laying the groundwork at the turn of the twentieth century, 
and with our nomadic ancestors over 30,000 years ago providing tallies as 
the original substance from which numbers sprang.

Our ongoing cultural shift from text to imagery, from linear to parallel 
thinking, from encoded to experiential communication, from reading to 
watching to participating, suggests a shift from symbolic to iconic mathe-
matics, just the kind of thing Spencer Brown has brilliantly delineated. It 
was a recent personal discovery that most influenced the evolution of this 
volume. I learned that marketing modern non-fiction books needs first a 
documented audience, and that in turn requires hyperactivity (for me at 
least) in the blogosphere and on Facebook and Twitter. Then I began to 
run into an embarrassing resistance from the written words. I was quite 
unable to write for a non-technical audience. In fact, it seemed as though 
I was unable to write for any kind of audience at all, much less to solicit 
and cajole that audience into existence. Only after resolutely resigning to 
my own inadequacies did the writing project become entertaining again.

So, here’s a bonus confession: most of what is written herein recounts a 
conversation I have with myself. Credible fiction is too easy, I much prefer 
incredible non-fiction. Getting computers to run in unary logic, to abandon 
the concepts of True and False in favor of present and absent, to protest 
against models of cognition based upon symbol manipulation was my cup of 
tea. Arithmetic, something that everyone must deal with, like logic, is in great 
disrepair. There has been little of substance to improve our understanding of 
number One and number Two for over a century. If you have math anxiety, 
if you just don’t get it, it is not your fault. Mathematics is to blame. Math 
teachers are asking us to play John Philip Sousa with a broken piccolo.

There are many ways to add 432 to 281. One is to realize that we have 
in our pockets an exact addition device, one constructed specifically for 
the task at hand, and all we need to do is to push some buttons. Before 
digital convergence, this device was called a phone. Another way to add 
is to incorporate cultural context and not care about exactness. We are 
putting a bit more than four buckets of a hundred together with a bit less 
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than three buckets of a hundred, about 700 total. Another method is to 
realize that our culture is constructed so as to protect us from this type of 
onerous task, and to let a professional behind the counter such as a clerk 
or a teller do it. Another method is to be a cultural barbarian, a dinosaur.  
This type of addition is based on an absurd premise: use a paper and pencil 
and memorized algorithms to seek an exact symbolic number that has no 
meaning and no context for interpretation, while using a brain that has no 
evolutionary capacity to do so, and while ignoring our ubiquitous modern 
computing tools.

Writing words is much easier than implementing software. Words serve 
as fiction relative to the rigor imposed by automated computation. Dare 
I add another thread? The actual content of the numerics and logic and 
programming and education and even writing in this book is focused on 
postsymbolic methods of thinking. What if arithmetic were pictures rather 
than symbols?  Iconic rather than symbolic?  Tactile rather than cogni-
tive? Apparent rather than encrypted?  Experiential rather than imagined? 
Concretely finite rather than abstractly infinite? What if numbers were to 
illustrate rather than encode? Pre-symbolic arithmetic was spatial, visual, 
tactile and embodied prior to the symbolic reformation of the last century. 
The totalitarian dictate imposed by the Laws of Algebra has flattened space 
and touch and perspective and, yes, intelligence into rows of squiggles. Iconic 
arithmetic is intended to return life to numbers.

So we arrive at the pregnant question: what should arithmetic feel like in this 
century? Exploring and playing with and getting the feel of iconic arithme-
tic can be astonishingly familiar, it is how arithmetic was before universal 
schooling sucked the life out of it.  If we replace abstraction by embodiment, 
will mathematics return to Earth? Might we then as a civilization become 
more aware of and more careful with the only world we have? Is mathematics 
contributing to the virtualization and then the trivialization of physical 
reality? Are numbers denizens of cyberspace, sirens that lure us away from 
stewardship and into fantasy? What will ecological arithmetic look like? 
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Here’s where we stand:  three volumes of numerics.  The first attempting to 
save children from symbolic abuse, the second on the formal axiomatics and 
philosophy of boundary arithmetic, and the third sharing a most exciting 
feature of the imaginary realm. These three volumes then provide familiarity 
before wading into unary logic, before the volumes that will explore how to 
be both rigorous and rational by forgetting what doesn’t matter, by ignoring 
the concept of False as completely irrelevant, by reconnecting rationality 
to sensory presence, by integrating physical intuition with cognitive visu-
alization, and by treating dichotomy itself as an illusion.

In the text, forward reference to Chapters 16 through 30 refer to Volume II 
and Chapters 31 through 45 refer to Volume III.

The present goal is to develop an intuitive arithmetic that is both rigorous 
and embodied, to restore arithmetic to the simplicity of its Babylonian ori-
gins as piles of pebbles. The motivation is to provide both school children and 
adults with an alternative to math-by-symbol-manipulation, an alternative 
that maintains the essence and rigor of mathematics while also accommo-
dating the essence and sensibility of humanity. 

The website iconicmath.com is mentioned frequently as a resource for videos 
and correspondence. It preceded and served as an outline for what you may 
choose to read next. The Cast of Characters are both colleagues I have 
learned from and authors I have studied. All are mentioned within the text. 
This volume does not consolidate what is known nor reflect the views of 
others. It is an exploration. Welcome to a postsymbolic playground.

       william bricken
       Snohomish Washington
     July 16, 2018
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Context

  Chapter 1 

You can recognize truth by its beauty and simplicity.1
— Richard Feynman (1985)

We are about to explore boundary mathematics, a 
completely different perspective on the common 

mathematical tools that we use daily. Boundary math 
is built from icons rather than symbols. Iconic math is 
embodied rather than abstract. 

Boundary arithmetic relies upon the single physical rela-
tionship of containment to express the elementary ideas of 
arithmetic. In this volume, we will be exploring two types 
of boundary arithmetic. Depth-value unit ensembles 
unify the way we write numbers with the way we add and 
multiply numbers. James algebra defines the common 
concepts and operations of arithmetic, (count, +, –, x, ÷, 
^, log, √ ), as different ways of arranging containers. 

The objective is to learn more about 
conventional arithmetic as it unfolds

within the unconventional conceptual system 
of nested containers.

1



Modern mathematics is an intellectual infrastructure 
for solving problems in science, commerce, engineering 
and technology. It is a vital tool for our civilization. The 
magnificent edifice of advanced math is not in question, 
since the few who practice advanced math have been 
extensively trained in navigating the treacherous waters 
and the precipitous chasms between formal concept and 
informal communication. Presumably we teach math to 
everyone because it helps with rational thinking, with 
formulating a scientific world view, with creating a better 
world. Since math is a way of thinking, it makes sense 
to include elements of how humans think into the struc-
ture of mathematics, without compromising the formality 
that distinguishes math from the other disciplines. But 
symbolic mathematics, as currently taught and prac-
ticed, is disconnected from human evolution, from human 
learning, from human psychology and from our natural 
human capabilities.

Different types of math engender different types of 
thinking. This volume is also about a new way of thinking. 
Arithmetic serves only as the context for a broader idea. 
As a small step, if we can come to understand a different 
kind of math, one that is more natural and more visceral, 
then we might at least be armed with the knowledge that 
the math taught in schools is a design choice, not a neces-
sity. Although it is possible to read iconic boundaries as 
common arithmetic, it is also possible to explore iconic 
modeling without ever considering it to be about num-
bers or arithmetic or algebra. Boundary math is about 
cognitive distinction.

The objective is to learn more about how we think 
by exploring the formal structure of distinctions.

If there is a single guiding light it is to recapture the 
simpler ways of doing arithmetic that evolved in human 
cultures over millennia, to return to a mathematics that 
makes sense because it is sensual. 

content

distinction

context
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1.1  Communication
A symbol is an encoded chunk of information. Symbols 
are communication tools that have an arbitrary repre-
sentation. Because symbols are encoded, we have to 
memorize and to recall the patterns that they weave. 
That’s why we have to teach children to read and to count. 
But not to walk, to talk, to see or to think. Symbols spe-
cialize in abstract ideas like freedom and ethics. Symbolic 
description is easily standardized. Symbols also impose 
a substantial cognitive load. It’s not a good idea to try to 
solve a symbolic algebra problem while playing tennis.

An icon looks like what it means. It bears a structural 
resemblance to the ideas it is intended to convey. Icons are 
communication tools that permit our senses to make the 
connection between image and meaning. An icon’s struc-
ture reflects its intention. Iconic arithmetic has a look and 
feel that connects to our bodies as well as to our minds.

The representation of the concept five should look like 
the icon / / / / / rather than the symbol 5. The concept of 
nothing should not have a representation. The symbol 
0 looks like something, it visually contradicts its own 
meaning. “0” is not nothing. 

The foundation of iconic arithmetic is the Additive Principle. 

Additive Principle 
A sum looks like the collection of its parts. 

The principle is physical, based on appearance as well 
as concept. It is the definition of addition that has been 
with us since the beginning of civilization. Adding is 
putting things together. Putting together does not change 
what things look like. The Principle of Multiplication 
is that every part of one touches every part of another. 
Multiplication is complete connectivity.

Multiplicative Principle 
Every part of one contacts every part of another. 

/ /    / / / = / / / / /

HOUSE
symbol

icon

image
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Like any math, iconic math is rigorous. It gives the same 
results as symbolic math while also maintaining a connec-
tion to concrete images and to familiar experiences. As 
iconic languages, then, James algebra and depth-value unit 
ensembles have the additional (some would say non-mathe-
matical) requirements of being both sensual and concrete. 
The concept called contains can be thought, seen and felt.

Three Volumes
In this volume we’ll begin with the arithmetic of tallies, 
simple marks that generate numbers. We’ll see how to add 
and to multiply tallies, in the process generating unit-en-
semble arithmetic. We’ll use depth-value notation to create 
parens arithmetic, a typographic yet iconic form. Then we’ll 
expand parens into two and three dimensional spatial dia-
lects and give them dynamics. In Chapter 5 we next explore 
the structure of James algebra. We’ll build common math 
out of three patterns of containment. Two of these patterns 
show us what can freely be discarded by calling upon 
the powerful strategy of void-equivalence. We’ll look at 
some examples of experiential dialects of James algebra, 
and we’ll conclude the volume by quickly exploring some 
other boundary math systems for arithmetic.

Volume II examines the relationship between James 
algebra and the concepts that currently define formal 
mathematics. We’ll compare boundary mathematics to 
Frege, Peano, Robinson and other symbolic definitions of 
number and then make the case for postsymbolic thinking. 

Volume III contains a surprise, a reclaimed imaginary num-
ber. Conventional analysis focuses on imaginary numbers 
with their characteristic unit i. At the core of James algebra 
is a new imaginary unit, J. As an anchor to familiar con-
cepts, J can be interpreted as the neglected logarithm of –1. 
The multiplicative imaginary i is a composite of the simpler 
additive imaginary J. In Volume III we’ll also explore 
non-numeric infinite and indeterminate James forms.

arithmetic is 
putting stuff 
into boxes
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Finally a gentle if risky reminder. We will be exploring 
both the formal structure and the conceptual develop-
ment of common numbers. Our task is to understand 
what numbers are and how they work by describing them 
in an unfamiliar foreign language. That language has 
making a distinction (observing a difference) as its prim-
itive operation. Standing back, we’ll see that the entire 
mechanism of arithmetic and algebra can be expressed by 
three permissions to change structure. Two rules permit 
structure to be discarded, one permits rearrangement. 
Standing close, we’ll see that the fine-grain structure of 
arithmetic is incredibly simple.

Once you get comfortable with the idea that structural 
transformation is independent of interpretation, your 
eyes and fingers can take over for your brain. Learning 
to abandon the conceptual and notational mire that we 
have been taught as common arithmetic no doubt will be 
a challenge. The most dominant obstacle is our natural 
propensity to impose previously learned complexity upon 
the simplicity of void-based reasoning. We’ll abandon the 
use of symbolic expressions in order to see more clearly. 
We will be looking toward what Jaron Lanier calls 
postsymbolic communication.2 An irony is that symbolic 
mathematics is only about a century old: more accurately 
we are looking backward, to the way that mathematics 
and particularly arithmetic has been carried out for thou-
sands of years.

The objective is to be able to do pre-college math 
with our eyes and with our fingers.

1.2  History
Throughout history, humans have used the abacus, the 
counting table, the knotted rope, the tally stick and the 
parts of the body to assist with the tasks of arithmetic.3 

We now have superb digital tools that have replaced phys-
ical tools such as pencil and paper. It is time that we end 
the pretense that people should know the algorithms used 

Chinese abacus
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to calculate with numbers. Addition and multiplication 
are no longer mental skills, they are buttons on an elec-
tronic device. 

The brain is the wrong tool to use for calculating.

For thousands of years, counting in Western cultures 
(ancient Greek and Roman societies for example) was 
done by one-to-one correspondence. The introduction 
of Hindu-Arabic numerals around 800 CE gave numbers 
their current meaning.4 Then for another thousand years, 
until the nineteenth century, counting (and accounting) 
was done by professional counters, on a counting table, 
in a counting house. These houses became so popular 
that they eventually turned into banks. 

Classical geometry is a premiere example of an iconic 
system. The objects of interest, squares and circles and 
angles, look just like squares and circles and angles. 
Leibniz, Descartes and Viète converted equations con-
sisting mostly of abbreviated words into symbolic systems 
that later came into wider use during the seventeenth 
century. In the mid-nineteenth century the discovery of 
non-Euclidean systems of geometry contributed to a loss 
of trust in human mathematical intuition, particularly in 
our spatial and visual senses. Then we got carried away. 
Here’s mathematician Philip Davis:

European
counting table 

circa 1550

Incan quipu

Gottfried Leibniz
1646–1716
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For two centuries mathematics has had harsh words 
to say about visual evidence. The French mathemati-
cians around the time of Lagrange got rid of visual 
arguments in favor of the purely verbal-logical (ana-
lytic) arguments that they thought more secure.5

The math that we teach in schools lurched into the twenti-
eth century on the back of this crisis in confidence. Those 
in the mathematical community who wondered about the 
rigor of mathematics discovered, after thousands of years, 
that they did not really understand arithmetic or geometry 
or badly behaving functions or even rigorous thinking. 
And so the community adopted a radical plan to put math-
ematics on a firm foundation. The hot idea was symbolic 
formalization, representing concepts using encoded sym-
bols that bear no resemblance to the concepts they identify. 
Mathematical concepts were to be conveyed using strings 
of typographic characters rather than using pictures and 
physical objects and overt behavior. Meaning was to be 
embedded into the sequential patterns of meaningless 
squiggles. The disconnection of form and meaning seemed 
reasonable since, from a Platonic perspective, abstract con-
cepts do not dwell in physical reality. If we cannot point 
at a concept such as all numbers then we surely cannot 
illustrate it. Any squiggle, perhaps ∀n, will do.

David Hilbert popularized among mathematicians the 
idea that math can be made formal and thus certain by 
removing all meaning from mathematical symbols, thereby 
relying solely on the structural relations between symbols.  
Here’s foundational logician Rudolf Carnap:

A theory, a rule, a definition, or the like is to be 
called formal when no reference is made in it either 
to the meaning of the symbols (e.g. the words) or 
to the sense of the expressions (e.g. the sentences), 
but simply and solely to the kinds and orders 
of the symbols from which the expressions are 
constructed.6

Joseph-Louis 
Lagrange

1736–1813

David Hilbert
1862–1943
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In an ironic twist, Hilbert then argued that arithmetic 
carries its own meaning.

In elementary domains of arithmetic...there is that 
complete certainty in our considerations. Here we 
get by without axioms, and the inferences have a 
character of the tangibly certain.

Hilbert continued that the essential relationship between 
the representation of a number and the concept of a num-
ber is iconic, that

the object doing the representing contains the essen-
tial properties of the object to be represented.7 

Hilbert was talking specifically about putting iconic 
strokes together to yield sums (e.g // + /// = /////), the 
unit-ensemble model described in Chapter 2. Thus we 
are in complete agreement with Hilbert: numbers are 
essentially iconic.

Symbolic math was invented, along with the horrible 
design idea that math should be done with our minds 
and our memories, rather than with our eyes, our bod-
ies and our physical tools. The unifying theme was that 
every mathematical object is a  set. The goal was to endow 
math with purity, to collapse all of mathematics into one 
grand scheme. Assumed invariant patterns called axioms 
defined how to think rigorously. Nicholas Bourbaki:

The internal evolution of mathematical science has, 
in spite of appearance, brought about a closer unity 
among its different parts...and which has led to what 
is generally known as the “axiomatic method.”8

The great success of the entirely symbolic approach, fol-
lowed closely by the rise of the use of streams of ones 
and zeros in digital computers, has led to the expression 
of mathematics almost exclusively in symbolic string 
languages. Unfortunately, in the rush to make math 

Brahmi digits
circa 800 CE

Bourbaki School
1935
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symbolic, the early twentieth century founders seem to 
have forgotten that people care about understanding and 
using math, not about an esoteric collection of structural 
rules that cast common arithmetic into conformity with 
a maze of symbolic concepts delineated by group theory 
built on top of set theory built on top of predicate logic.  
Logicians Barwise and Etchemendy observe:

Despite the obvious importance of visual images 
in human cognitive activities, visual representation 
remains a second-class citizen in both the theory 
and practice of mathematics.9

Belief
Mathematics is a human endeavor, obviously. Mathematics 
is replete with metaphysical concepts (also called beliefs) 
such as completed infinity, physical continuity, Platonic 
virtual reality, universal and eternal truths, constructions 
so grand that they are beyond the scope of time and space, 
extra-human origins of human ideas, calculations that 
may not halt, and formal objects that exist but cannot be 
identified. These belief systems are not necessary for a 
formal description of nor for an informal understanding 
of arithmetic.10

Perhaps there is not one grand system that unifies 
mathematics. As scholars studying ethnomathematics 
have affirmed, mathematical thought exhibits organic 
diversity.11 Here is computer scientist Joseph Goguen’s 
attempt to disperse the totalitarian attitude that mathe-
matical thinking is uniform and universal: 

Notation is only the surface reflection of these 
deeper, essentially social struggles. But perhaps 
it is time we realize that no metanarrative can be 
demonstrably superior to all others for all purposes, 
and that, in this sense, we live in many different 
worlds, rather than in just one world.12

Joseph Goguen
1941–2006
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A premiere example of a physically dysfunctional sym-
bolic concept is the associative law of addition. 

 (a + b) + c = a + (b + c)

The parentheses used to assert this law create visual 
interference that undermines the meaning of addition, 
that of putting together. Putting things together two-
at-a-time is not a property of addition. The associative 
law specifies a method to achieve addition, one that is not 
particularly efficient. The sequential two-at-a-time strat-
egy might be because there are two sides to a textual plus 
sign; it might be because addition tables are constructed 
to add only two numbers at a time; it might be because 
relations are usually binary; it might be because group 
theory incorporates right- and left-side rules; or it might 
be a hangover from counting by adding one at a time. 
But here’s what we can learn from children. To add many 
things, put them together. It doesn’t matter how. 

Vision
The earliest founders of rigorous mathematical systems 
used diagrams and visual thinking extensively. Venn and 
Frege and Peirce all developed functional visual mathe-
matical notations. They understood that thinking unites 
imagery with structure. According to Charles S. Peirce,

All necessary reasoning is diagrammatic. ... all 
reasoning depends directly or indirectly upon 
diagrams.13

Many rigorous iconic calculi have recently been stud-
ied; these include fractals, cellular automata, particle 

Charles Sanders Peirce
1839–1914
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diffusion, knot theory, and the paradigm of modern 
algebra, category theory. Philosopher Danielle Macbeth:

At least for the case of mathematical concepts, then, 
we can say exactly what meaning is: it is nothing 
more and nothing less than what is exhibited in...
diagrams and expressions that directly display 
the senses of concept words, senses within which 
are contained everything necessary for a correct 
inference.14

Mathematics is necessarily sensual, so let’s pardon it from 
banishment into symbolic disembodiment. Let’s ground 
arithmetic in the tangible Earth rather than in imaginary 
realms of conceptual abstraction and let’s require that it 
recognize reality as we humans experience it.

1.3  Boundary Forms
Boundary forms are configurations of nested boundaries. 
Boundaries both separate and connect. It is convenient 
to consider these boundaries as containers that have an 
inside and an outside. In this volume, we’ll turn the concept 
of containment into a comprehensive mathematical tool.

In James algebra for example everything is a container. 
Empty containers are units. There are two basic forms: 
( ) and [ ]. They cancel each other out. When we wish 
to connect to arithmetic, ( ) is One and [ ] is a type of 
Infinity. When we wish to think about cognitive distinc-
tions, we might say that ( ) is what is and [ ] is what could 
be. When we wish to eschew interpretation, the name 
of ( ) is Round and the name of [ ] is Square. These 
delimiters and their names are quite arbitrary, dictated 
by the available keys on a typewriter, and having no 
relationship to the geometric shapes they may invoke. 
These delimiters represent generic containers. The only 
thing that a container does, regardless of shape or rep-
resentation, is to hold things.

( )
some containers

separated

connected

11

Context



A central innovative idea is to treat non-existence, void, 
with the respect it deserves. Void has no properties and 
does not exist, taking the concept of 0 with it into obliv-
ion. An empty container is void inside. Empty containers 
are units precisely because they hold nothing inside. 

A collection of units within a common container is an 
ensemble. We can interpret the cardinality of an ensemble 
as a number. Addition is eliminating the boundaries that 
distinguish separate ensembles. Multiplication is putting 
ensembles inside other ensembles. Addition eliminates 
distinctions while multiplication nests them. 

James algebra includes a generalized inverse, < >, which 
is a single boundary concept that condenses the basic 
inverse operations of arithmetic. Negative numbers, sub-
traction, unit fractions, division, roots and logarithms 
are essentially the same operation applied in different 
contexts. Cognitively, < > can be associated with reflec-
tion, with turning structure back upon itself. It’s name 
is Angle and alone it is nothing.

Containers
The concept of a container is tangible, not abstract. 
All boundary forms can be constructed in physical space. 
Containers are fundamentally different than symbols, 
containers have a physical presence. Containers also have 
an inside. Here’s Lakoff and Núñez as they develop a 
theory about the cognitive origins of mathematics:

The Container schema has three parts: an Interior, 
a Boundary, and an Exterior. This structure forms 
a gestalt, in the sense that the parts make no sense 
without the whole.15

Containers are so useful that they form the structural 
basis of

— computer circuity and logic
— mathematical sets and functions

an ensemble
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— web description languages like HTML and XML
— software design environments like InDesign
— storage closets
— loading docks
— suitcases and
— kitchens.16

A container distinguishes two spaces, its inside and its 
outside.17 It is an object from the perspective of its outside 
context, and an operator upon its inside content. When 
we look at a container from the outside, it appears to be 
an independent object. When we are inside a container, 
it feels like an environment.18 When we make a distinc-
tion, we are its container. It is our viewing perspective that 
determines whether a container is an object that can be 
manipulated or an environment that can be experienced 
or a concept that can be imagined. 

Boundaries invite participation.  This feature is suffi-
ciently important to elevate it to our first principle, the 
Principle of Participation.

Participation
How we look at a form determines what it is.

There is only one relationship between two containers, A 

contains B. Containment, together with the structure of 
boundaries, is sufficient to express completely the objects 
and operations of elementary arithmetic and algebra. This 
is what it means to simplify arithmetic: to describe it fully 
using one idea, the distinction, as represented by a con-
tainer that distinguishes inside from outside.

Containers find their cognitive expression as categories, 
which are firmly grounded in the sensory-motor systems 
of the brain. Lakoff and Núñez again:

Propositional calculus (the simplest form of sym-
bolic logic) is ultimately grounded in Container 
schemas in the visual system.19

(B)A
A contains B

environment

object

distinction
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From an abstract perspective, the name “contains” is 
arbitrary, a metaphor for visualization but not essential. 
We are exploring a system with one binary relation, ʀ, 
that has the properties of being irreflexive, asymmetric, 
and intransitive. These properties are more or less the 
opposite of the properties of equals. In other contexts, ʀ 
might be called parent, underneath, eats, causes, implies, 
and an unlimited number of other evocative names.  

Distinction
Well, there is a refinement to be made. The idea of a 
“binary relation” comes from our conventional foundation 
of logic and sets. Relational concepts such as reflexive 
and symmetric and transitive are themselves derivative 
rather than definitional. We are beginning prior to logic, 
prior to the formal concept of a relation. The abstraction 
that generalizes the contains relation is distinction, or 
difference. Spencer Brown provides a definition:

A distinction is drawn by arranging a boundary 
with separate sides so that a point on one side cannot 
reach the other side without crossing the boundary.20

Distinction is not numeric, it has no units of measurement 
and no scale of comparison. “Difference is not a quan-
tity.”21 As such, distinction is not grounded in science, it 
is grounded in experience. Gregory Bateson continues:

A difference is an elementary idea. It is of the stuff 
of which minds are made.22

Our minds and our senses transact differences. Matisse: 
“I don’t paint things. I only paint the difference between 
things.”23

An algebra of distinctions is fundamentally different 
than both an algebra of measurements and an algebra of 
numbers. Actions in the world involve energy. We might 

distinction

Gregory Bateson
1904–1980
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say that they occur on the outside of the boundary of our 
bodies. In contrast, difference does not involve energy. 
Difference is not localizable, it cannot be assigned a place 
or a time. Difference is on the inside. When we compare 
a duck to a chicken, the difference does not reside within 
the duck, nor is it within the chicken, nor is it within the 
space that separates the two. “In a word, a difference is 
an idea.”24 Let’s elevate Bateson’s definition to our second 
principle, the Principle of Distinction.

Distinction
Difference is an idea.

Our bodies then are the concrete realization of physical 
difference, while our thoughts are the abstract realization 
of virtual difference. Bateson provides clarity,

The explanatory world of substance can invoke 
no differences and no ideas but only forces and 
impacts. And, per contra, the world of form and 
communication invokes no things, forces, or impacts 
but only differences and ideas.25

Without distinction, there is the non-concept void. This 
underlying page supports typographic characters. 
Similarly void is the substrate that supports distinction. 
Like the white space of the page, void is everywhere. 
Unlike this page, void has absolutely no properties of any 
kind. This means that there are no relationships between 
containers within the same space since there is no inter-
vening medium to support a relationship. No points, no 
distances, no coordinates, no dimensions, no metrics. It 
is as if the characters printed on a page were each inde-
pendent and unrelated to one another. All that they would 
share is the page or the line they are recorded upon. There 
is only containment. Our third principle:

Void
Void has no properties.

difference is 
dimensionless
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1.4  Embodiment
Our senses and our bodies are the interface between mani-
fest and conceptual. Distinction is the ground of perception. 
When there is no distinction between inside and outside, 
we do not perceive a difference. The interface between our 
physical and our cognitive selves is a boundary that trans-
acts only differences. The physicality of our body defines 
an obvious container of our self. Boundary math carries 
this physicality, via iconic representation, directly into the 
core of mathematical thinking. Philosopher Mark Johnson:

The container schema’s structural elements are “inte-
rior, boundary, exterior,” its basic logic is “inside 
or outside,” and its metaphorical projection gives 
structure to our conceptualizations of the visual field 
(things go in and out of sight), personal relationships 
(one gets in or out of a relationship), the logic of sets 
(sets contain their members), and so on.26

James algebra and unit ensembles are both embodied. 
The concept of a container is necessarily abstract. The 
representation of a container is physical, a tangible 
manifestation of the concept. The meaning of the rep-
resentation is unequivocally an idea, an idea that can 
at any time be enacted. Lakoff and Núñez: “Ultimately, 
mathematical meaning is like everyday meaning. It is 
part of embodied cognition.”27

Mathematics and mathematical “truth” necessarily 
co-evolve, not only in a conceptual sense, but also in 
coordination with the physical evolution of our brains 
and our bodies. We come to understand mathematical 
ideas through our bodies. Bluntly, mathematics is “con-
ceptualized by human beings using the brain’s cognitive 
mechanisms.”28 Containers are intended to re-anchor 
mathematics to physical existence, to return the beast 
to its creators, to tame those aspects of the beast that 
we might encounter in daily life.  We have evolved from 
mathematical Platonism to mathematical nominalism.

nominalism
abstract objects

do not exist
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Rigor
Rigorous math requires that mathematical techniques 
be independent of our personal and cultural biases and 
beliefs. We want math to be extremely useful and com-
pletely reliable and also uncompromising in its neutrality. 
But does neutrality necessarily imply non-human? Must 
math be an abstract fantasy removed from human exis-
tence? Can math be both rigorous and organic?

In Proofs and Refutations Lakatos chronicles the evolution 
of a single formal idea, the structure of polyhedra. He 
concludes:

Mathematics, this product of human activity, ̒alien-
ates itself’ from the human activity which has been 
producing it. It becomes a living, growing organism, 
that acquires a certain autonomy ... its own autono-
mous laws of growth, its own dialectic.29

It is time to reclaim mathematics as a human activity, 
to tame the creature we have unleashed. Humane math 
aligns with how our minds are known to work, with how 
the patterns of communication between people work, and 
with how physical existence embodies our knowledge. 
Boundary math is both humane and rigorous, the two 
objectives are not incompatible. The result is a much sim-
pler iconic arithmetic that reflects how numbers evolved 
in human cognition prior to our recent truly exotic exper-
iment with purely symbolic mathematical form. 

Truth and Beauty
This exploration has deep parallels with the way that 
physicists describe reality. The basic technique of Physics 
is to derive simple mathematical models that condense 
disparate observations. Here we are exploring the basic 
nature of arithmetic by developing a simple model that 
condenses disparate algorithms and operations. Einstein:

Imre Lakatos
1922–1974
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A theory is more impressive the greater the sim-
plicity of its premises is, the more different kinds of 
things it relates, and the more extended is its area 
of applicability.30

Two different types of problem might arise. Further 
observation may introduce new data that is inconsis-
tent with the model. In this case the model needs to be 
expanded, or perhaps abandoned altogether. Problems 
can also occur within the model itself. Perhaps a nasty 
division by zero might be encountered. An intractable 
infinity might be swept away through an inventive math-
ematical technique such as renormalization. Or the model 
might be abandoned altogether. Such was the case in the 
early nineteenth century when Lobachevsky and Bolyai 
(and Gauss before them) developed geometries that aban-
doned the parallel lines axiom of ancient Greek geometry.

It was Maxwell’s electromagnetic equations in the late 
nineteenth century that first challenged the idea that 
physics is about perceived reality. His wave equations 
ignored both the how (i.e. the physics) and the what (i.e. 
the observable). Mathematician Zvi Artstein:

The only justification for the existence of the waves 
was the facts that they provided a solution to the 
equations, solutions that have wavelike characteris-
tics....He forwent the physical explanation based on 
known physical quantities. He published his equa-
tions, as if declaring this is physics, the physics is 
inherent in mathematics.31

When Michaelson and Morley went looking for the aether 
that supported the wave propagation of light they found 
nothing.  There was no physical substrate. 

Maxwell’s equations are beautifully symmetric. Beautiful 
models, those with lots of symmetry and regular struc-
ture, have been preferred historically over models that 
are messy. Scientists Augros and Stanciu: “Beauty is the 
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primary standard for scientific truth.”32 The same is true 
of mathematics. Here’s mathematician Godfrey Hardy:

Beauty is the first test: there is no permanent place 
in the world for ugly mathematics.33 

This despite the possibility that both Nature and mathemat-
ics may at their core be messy. To maintain mathematical 
beauty, new, never before observed phenomena might be 
postulated. Experiments are then designed to expose the 
potential new phenomena. Theory drives experiment. 
Often different theories diverge, to arrive at completely 
different descriptions of the same observations. In this case, 
attempts are made to merge the theories, or perhaps the 
theory with the greatest explanatory power is kept and the 
others tossed away. Physicist Murray Gell-Mann: 

Frequently a theorist will throw out a lot of data on 
the grounds that if they don't fit an elegant scheme, 
they are wrong.34

What is true is moot, since we can also be guided by what is 
simplest. The field of mathematics has recently abandoned 
the connection of Truth to Reality by defining its own truth 
as its own internal consistency. The concept of Truth itself 
can work against accurate description, as it does in the 
case of the wave/particle duality in quantum mechanics. 
Physicist Paul Dirac: 

It is more important to have beauty in one’s equa-
tions than to have them fit an experiment.35

This attitude stems from a growing realization that mod-
ern physics is no longer connected to our perception of 
Nature. Mathematical physicist Roger Penrose:

It is a common view among many of today’s physi-
cists that quantum mechanics provides us with no 
picture of ‘reality’ at all! The formalism of quantum 
mechanics, on this view, is to be taken as just that: 
a mathematical formalism.36
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When physics becomes mathematics, our concepts of 
physical reality begin to conform to the values of mathe-
matics. Elegance, symmetry, scope, these are how leading 
scientists view Nature. Here’s Stephen Hawking:

I don’t demand that a theory correspond to reality 
because I don’t know what it is. Reality is not a 
quality you can test with litmus paper. All I’m con-
cerned with is that the theory should predict the 
results of measurements.37

And we know from quantum mechanics that the results 
of measurements, what we see, depend upon how we elect 
to look. Reality cannot escape its sensory basis.

1.5  Humane Mathematics
If metaphysical Truth and physical reality are no longer 
the criteria for knowledge, are there multiple ways to 
describe the concept of number? Which are preferable? 
Specifically, which description of numbers, a beautiful 
concise one or a messy complex one, is preferable? Are 
any particular models of mathematical patterns more 
true than others? Is the way we write arithmetic fully 
separate from what we are attempting to express? Is the 
barrier between representation and meaning an imper-
meable wall, or is it perhaps a bridge, or is it a fantasy 
of convenience that supports meta-analysis at the cost of 
comprehension? 

In the realm of physics, experiment and observation 
often help to guide the choice of language for a theory. 
In elementary mathematics, the ability of children to 
learn simple concepts can be taken as experimental evi-
dence. A mathematical concept is not simple if kids do 
not understand it. Our current observational data is that 
after studying arithmetic for a dozen or so years, about 
two out of every three children and young adults in the 
U.S. do not understand such elementary numeric ideas as 
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negative numbers, fractions and the rule of distribution 
that connects addition and multiplication. These three 
concepts account for the vast majority of student errors 
in math classes.38 Might the wisdom of youth be telling 
us that perhaps we have the wrong model of arithmetic 
itself? Cognitive scientist Stanislas Dehaene:

When we think about numbers, or do arithmetic, we 
do not rely solely on a purified, ethereal, abstract 
concept of number. Our brain immediately links the 
abstract number to concrete notions of size, location 
and time.39

We have a choice to continue to support a mathematical 
and symbolic perspective that denies human experience 
and the reality of our physical presence in a physical 
environment, or to encourage students to be aware and 
responsible within the world of physicality by teach-
ing mathematics as a pragmatic tool rather than as an 
abstract, cognitive skill.

The vision is to return to native mathematics, prior to the 
conversion of the visceral sensate numbers of our cultural 
and physical evolution into the meaningless symbolic 
squiggles of the twentieth century. Symbolic math may 
have been completely appropriate during the transitional 
period from about 1910 to 1980, prior to the computer 
revolution. Now it is time to give symbolic processing to 
its rightful owners, those microscopic arrays of transis-
tors and wires that constitute digital hardware. It is time 
to return mathematical concept, understanding, intuition, 
and just plain common sense to their rightful owners, 
flesh-and-blood humans. We can reserve symbolic math 
for professionals, and for students who declare their inter-
est in the field of mathematics as a college major. We can 
maintain formalism, the essence of modern mathematics, 
within precollege math without loosing our humanity by 
embodying it in utility. We do not need to pretend that 
math exists in some abstract virtual world. We can own 
math as a human invention, a tool to aid thought. 

Arabic digits
circa ~800 CE
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We do not need math classes for non-mathematicians.

Any subject can call upon the tools provided by a mathe-
matical perspective, when needed, when appropriate and 
when useful. All it takes is recognition of the obvious: 
symbolic math is not humane math. Ask any school child.

Simplicity
What is necessary first is to show that non-symbolic 
math does exist, that we can anchor the formal concepts 
of arithmetic within common sense and within common 
sensation. Here’s Stephen Wolfram:

Like most other fields of human enquiry mathe-
matics has tended to define itself to be concerned 
with just those questions that its methods can suc-
cessfully address…the vast majority of mathematics 
practiced today still seems to follow remarkably 
closely the traditions of arithmetic and geometry 
that already existed even in Babylonian times.40

There is an organic legitimacy, a human context, from 
which mathematics arose.  But we became enamored by the 
symbolic process, without adequately recognizing the cost. 
Historian of mathematics Alberto Martínez comments:

Even when elementary mathematical rules are 
designed to represent plain manipulations of things, 
they might still be used to construct symbolic state-
ments that do not correspond to anything that can 
be exhibited palpably.... Throughout history, math-
ematicians realized that by adopting diverse and 
particular empirical explanations to justify specific 
symbolic operations, mathematics acquired a sem-
blance of arbitrariness and inconsistency. Thus they 
came to cast aside empirical explanations as mere 
illustrations and applications, and not as justifica-
tions for mathematical rules.41
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The concept of truth has migrated from experience to 
symbolic structure. Mathematics abandoned the phys-
ical in favor of its own internal structure. In the first 
half of the twentieth century, however, it became clear 
that mathematical structure had neither global truth nor 
consistency to offer. Martínez again:

Virtually nobody imputes to traditional algebraic 
methods any blame for instances where the sym-
bolism generates unsatisfactory or bizarre results...
virtually nobody says that maybe it is the algebra 
that is defective.42

Professional mathematicians are trained to use powerful 
and exotic tools, and advanced math is such a tool in the 
hands of a professional mathematician. But when, for 
example, should an average driver know how to fix an 
electronic carburetor? When should a parent know how 
to prepare quiche lorraine for breakfast? When should 
a web surfer know how to write XML database search 
algorithms? When should a homeowner use the quadratic 
formula? 

The discipline of math is built upon absolute abstraction. 
It is intentionally and adamantly disembodied (ignoring 
the human), ungrounded (ignoring the earth), and imagi-
nary (ignoring reality). Philospher of mathematics Brian 
Rotman observes that mathematics itself is built upon 

A world of mathematical objects — numbers, points, 
lines, sets, functions, morphisms, spaces, and the 
like — that are held to exist prior to and independent 
of any talk, description, or discussion of them....the 
belief in objects “out there” — uncorrupted by the 
vagaries and uncertainty of history, culture, human 
choice, and the associated subjectivities that per-
meate discourse — is crucial and nonnegotiable.43

Suzhou digits
circa ~1200 CE
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The concepts that constitute abstract math (symbolic 
manipulation, Platonic reality, infinity, zero) are theo-
logical. It is churches that manipulate sacred symbols as 
doctrine; it is religions that call upon an imaginary reality 
for miracles; it is only gods that are infinite. Math has 
established itself to be sacred, to be beyond humanity, 
and thus to be beyond common comprehension. Unlike 
religion, however, one’s belief in math is not rewarded 
by absolution or by contentment or by virtue. Failure 
to believe in the whole numbers leads to extreme deri-
sion. A numeric atheist (a matheist) gets condemned not 
to hell but to ignorance. While common religion allows 
the needy the salvation of belief, common math simply 
equates need with incapability.

The Doctrine of Abstraction is unique to Western aca-
demic mathematical thinking. Street merchants in Brazil, 
money lenders in India, school children in Africa, grocery 
shoppers in an American supermarket, even statistical sci-
entists measuring the popularity of a political candidate, 
none comprehend numbers as abstractions. Their real-
world numbers are constantly grounded in application, 
in utility, in human dynamics. Ethnomathematics, the 
study of how people actually use math, sees the extreme 
abstraction embodied in Western thought as yet another 
mechanism of cultural imperialism.44

The mathematics of chaos theory, iterated functions 
and cellular automata each embody an anti-abstraction 
principle. Although computation in these fields can be 
deterministic, the only way we know what the next step 
will bring is to compute that step. It is not possible to 
develop a symbolic abstraction or condensation that mod-
els or that predicts what is next. There is nothing simpler 
than real-time unfolding.

Yes, it will probably be very embarrassing for our culture 
to admit how delusional it has been, but by now we should 
be accustomed to delusional error. No, the Earth is not the 
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center of the universe. Those twinkles in the sky are not 
all stars. Indigenous peoples are not savages. Obviously 
all mammals have emotions. The universe is not made of 
matter, nor is it made of mathematics. Mathematics itself 
is the tool that allows us to explicitly ignore the deeper 
detail of our world in favor of a crisp abstract summary 
that we can see, handle and use.

1.6  Remarks
Symbolic math is a big part of the problem of math educa-
tion; another big part is our cultural belief that all people 
should learn the details of an esoteric discipline at the cost 
of their own self-confidence. We may find that symbolic 
abstraction is a weakness as well as a strength. When it 
comes to problem solving, we might find that symbolic 
arithmetic is an antiquated tool. We might find that iconic 
arithmetic provides greater elegance, simplicity, ground-
edness and hopefully ease of learning. 

In the rest of the volume, we will be seeing just how 
much of algebraic theory can be abandoned without loss, 
in pursuit of reconnecting mathematics with humanity. 
Notation, how we record mathematical ideas, is empha-
sized as both a problem and a solution.

In the text we will often transcribe between two differ-
ent representational (and conceptual) systems, between 
conventional strings and boundary math containers. I’ll 
introduce a transcription symbol, ☞, to indicate when 
we are changing systems.

one formal system    ☞    another formal system

We will restrict the use of ☞ to cases in which there is 
a specifically known transcription map between two 
systems, a map in which transcription does not introduce 
confusion. This makes ☞ a type of equal sign. We’ll call 
it “the finger”. The pointing finger is also a reminder that 
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a cognitive shift is needed. Transcription is broader than 
mapping the same concept across two different notations. 
Underlying the profound difference between symbolic 
and iconic notations is a substantively different system 
of concepts about what arithmetic is and how it works.  
The finger, ☞, makes us aware that transcription from 
conventional expressions to boundary forms includes 
eliminating the conceptual infrastructure of sets, func-
tions and logic.45 

In A New Kind of Science, Stephan Wolfram valiantly 
reconstructs Science itself without calling upon calculus 
or algebra or arithmetic or logic. 

The presence of logic is in fact not essential to many 
overall properties of axiomatic systems.46 

James algebra follows distantly in Wolfram’s footsteps to 
construct a new kind of arithmetic. As you might expect, 
at first glance James patterns appear to be exotic (just 
like any math). The initial learning curve is not steep, but 
the new terrain may be quite unfamiliar. 

To establish a common ground, in Chapter 2 we’ll first 
visit a system that is familiar to us all, unit-ensembles. 
Unit-ensemble arithmetic describes how creatures like 
/////  behave. Then we’ll tame the multiplicity of tally 
marks with the tools of depth-value in Chapter 3, and 
provide many sensory and dynamic depth-value repre-
sentations of arithmetic in Chapter 4. 

In Chapters 5 and 6, we’ll become oriented to James 
algebra and the primary conceptual content of this vol-
ume. Chapters 7 through 12 address James algebra from 
a structural perspective. How can only containment 
express all of arithmetic? What makes a unit? How does 
structural change work? How does counting work? How 
do numbers work? In Chapters 13 and 14, we’ll return to 
higher dimensions to provide several examples of sensory 
and experiential systems of James arithmetic.

simple ≠ familiar
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16. loading docks, suitcases, and kitchens:  In Metaphors We Live By (2003) 
G. Lakoff and M. Johnsen extend the CONTAINER metaphor to include 
houses, words, linguistic expressions, argumentation, forests, clouds, sports 
events, social groups, territoriality, time, activity, our visual field, our bodies, 
and our lives. 

17. its inside and its outside: The Jordan curve theorem asserts that a closed 
loop on a flat surface does construct an inside and an outside. Its symbolic 
proof is notoriously difficult, presumably because the obvious properties of 
spatial forms are obscured by strings of symbols.

An engineer, a physicist, and a mathematician were faced with the problem 
of putting a herd of sheep inside a fence while using the least amount of 
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an automobile. When we stand outside it is a beautiful, or perhaps a utili-
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19. Container schemas in the visual system:  Lakoff & Núñez,  p.134.
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Brown (1969) Laws of Form  p.1.

21. Difference is not a quantity: G. Bateson (1991) A Sacred Unity  p.219.

22. It is of the stuff of which minds are made: Bateson, p.162. 

23. I only paint the difference between things: attributed to Henri Matisse 
without a specific reference that I could locate.

24. In a word, a difference is an idea: G. Bateson (1972) Steps to an Ecology 
of Mind  p.481.

29

Context



25. but only differences and ideas: Bateson, p.271.

26. the logic of sets (sets contain their members), and so on: Paraphrased 
from M. Johnson (1987) The Body in the Mind. In F. Varela, E. Thompson & 
E. Rosch (1991) The Embodied Mind  p.177.

27. It is part of embodied cognition: Lakoff & Núñez, p.49.

28. using the brain’s cognitive mechanisms: Lakoff & Núñez, p.3. 

29. its own autonomous laws of growth, its own dialectic: I. Lakatos (1976) 
Proofs and Refutations: The logic of mathematical discovery  p.146.

30. the more extended is its area of applicability: A. Einstein, in P. Schilpp 
(ed.) (1979) Autobiographical Notes. A Centennial Edition p.31. As quoted in D. 
Howard & J. Stachel (2000) Einstein: The Formative Years, 1879-1909  p.1.

31. the physics is inherent in mathematics: Z. Artstein (2014) Mathematics 
and the Real World  p.137-138.

32. Beauty is the primary standard for scientific truth: R. Augros & G. 
Stanciu (1984) The New Story of Science p.39.

33. there is no permanent place in the world for ugly mathematics: G. 
Hardy (1941) A Mathematician’s Apology  p.14.

34. if they don’t fit an elegant scheme, they are wrong: M. Gell-Mann 
quoted in H. Judson (1980) Search for Solutions  p.41.

35. than to have them fit an experiment: P. Dirac (1963) The evolution of 
the physicist’s picture of nature. Scientific American 208(5) p.45-53.

36. to be taken as just that: a mathematical formalism: R. Penrose (2004) 
The Road to Reality  p.782.

37. the theory should predict the results of measurements: S. Hawking 
& R. Penrose (1996) The Nature of Space and Time  p.121.

38. the vast majority of student errors in math classes: For example, 
see W. Bricken (1987) Analyzing Errors in Elementary Mathematics. Doctoral 
dissertation. Stanford University School of Education.

30

Chapter 1



39. links the abstract number to concrete notions of size, location and time: 
S. Dehaene (2011) The Number Sense: How the mind creates mathematics  p.246.
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Structure

  Chapter 5 

Structure

  Chapter 5 

Everything should be made as simple as possible, 
but not simpler.1

— Albert Einstein (1977)

This chapter is both a convenient summary of the 
James formal system collected into one place, and an 

advanced look at what is to come. It provides a succinct, 
structural description of the pattern rules that define 
James algebra. Chapter 6 next includes an introduction 
to the conceptual structure of these forms. 

While learning, it is often beneficial to see in advance 
an overview of the upcoming content. This approach is 
called advanced organization, showing new concepts first 
so that when they are encountered later, in perhaps an 
unfamiliar context, the learner will not be taken aback 
by novelty. Cognitively, an advanced organizer allows 
the subconscious to process the new ideas and to lay 
a mental scaffolding that accommodates change. Our 
bodies do instantly understand the difference between 
inside and outside. Our skin is a very compelling (and 
built-in) model of a boundary. It’s our cognition that 
needs reminding. I personally prefer the surprise of new 
ideas. You however might prefer to know what to expect. 
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5.1  James Algebra
There are three types of James containers, represented 
in linear text by three different shapes of delimiting 
brackets. Figure 5-1 shows these bracket forms as well 
as a possible interpretation for conventional arithmetic. 
When empty, the three container types can be interpreted 
as the three fundamental concepts of arithmetic: 1, ∞ and 
0. They can also be read as operations: power, logarithm, 
and inverse, with an arbitrary base, #.

Herein, James forms are presented from both the nested 
container perspective and from the numeric interpreta-
tion perspective. Neither perspective depends upon the 
other. The listings at the end of the chapter show per-
mitted useful boundary transformations and connect 
the invariance that each supports to known expressions 
within conventional arithmetic and algebra. 

To ameliorate the initial unfamiliarity, you may want to 
think of the notation for container forms as a foreign 
language. The goal is to see it as a clearer way to think 
about elementary arithmetic. We are also beginning at 
the very beginning, in conceptual territory so simple as 
to appear unfamiliar.

In mathematics, the greatest degree of self-evidence 
is usually not to be found quite at the beginning, but 
at some later point; hence the early deductions, until 
they reach this point, give reasons rather for believ-
ing the premises because true consequences follow 

   boundary type        James form     ☞    interpretation

     round       (A)      #A

     square      [A]     log# A
    angle       <A>     –A

Figure 5-1:  James boundaries and an interpretation

some patterns 
of containment
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from them, than for believing the consequences 
because they follow from the premises.2

Above, Whitehead and Russell are referring to deductive 
logic, but their comment applies just as well to an algebraic 
system. This chapter includes the entire content of James 
algebra, so that we may see all together the algebraic axi-
oms and the structural consequences that follow.

Patterns and Principles 
Many of the concepts of James algebra are succinctly 
listed on the Concepts page that follows this section. 
This conceptual structure rests upon a body of general 
principles related to boundary mathematics.

— The single underlying concept is distinction.
— Mathematics is the experience of abstraction.
— Experience is not a recording. Representation 

is not a reality.
— To participate in abstraction is to partition 

space, to construct a boundary.
— Boundaries both separate and connect.
— Representation and meaning are different 

sides of the same boundary.

In James algebra structurally different forms of contain-
ment are defined to be equal by pattern equations. Forms 
are configurations of boundaries. The structure of a form 
can be changed only by following specified pattern rules. 
Axioms are transformation rules that are permitted as 
design decisions. Theorems are convenient transforma-
tions that follow directly from the axioms. Frames are 
notational structures that allow a conceptual organization 
of types of forms. Maps, or interpretations, are ways 
to convert James forms into conventional expressions 
within the arithmetic and algebra of numbers. Some 
James forms can be interpreted as imaginary numbers, 
some can be interpreted as being non-numeric.

our body is 
our interface
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Arithmetic
Here are the iconic Principles that define elementary 
arithmetic:

— Existence: something is different from nothing.
— Accumulation: parts do not condense.
— Additive: a sum looks like its parts.
— Multiplicative: each part of one touches each 

part of the other.
— Hume’s: equality is one-to-one correspondence.

Axiomatic Style
A mathematical system must include some undefined 
ideas from which other formalized ideas are constructed.  
Whitehead and Russell:

It is to some extent optional what ideas we take 
as undefined in mathematics; the motives guiding 
our choice will be (1) to make the number of unde-
fined ideas as small as possible, (2) as between two 
systems in which the number is equal, to choose the 
one which seems simpler and easier.3

We begin then as did Spencer Brown, with one concept, 
that of distinction.4 We represent the distinction by a 
boundary with a clearly delineated inside and outside. If 
you like, we begin by assuming the Jordan curve theorem 
as perceptually obvious. 

Axioms are structural starting points, the first ground. 
There is an unlimited variety of axiom sets. The few inter-
esting ones are those that provide some sort of power: 
more elegant concepts, greater understanding, learn-
ability, philosophical appeal, perceptual obviousness, or 
importantly, a clear map to well known formal structures 
like logic, numbers, and sets. You might notice that there 
are very few definitions. From the structural perspective, 
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containers have no inherent meaning other than their 
ability to contain. Definitions are abbreviations. Again, 
Whitehead and Russell: 

...“definition” does not appear among our primitive 
ideas, because the definitions are no part of our 
subject, but are, strictly speaking, mere typograph-
ical conveniences.5

Meaning is off-loaded onto an interpretation, so that we 
may read containment structures as physical forms, as 
collections of nested boxes. All that is required is the 
algebraic tool of an equal sign and the ability to sub-
stitute equals for equals. The interpretation is dragged 
along with the valid transformations. If we must, we can 
assume that the definition of “=” is is-confused-with.6 In 
Chapter 7 we will identify equality as permitted structural 
transformation. This is in contrast to the usual interpre-
tation of = as invariance of numeric value.

Notation
Our notational zoo includes only four types of creature.

— containers represented by delimiting brackets, 
with empty containers serving as constants.

— variable letters that stand in place of an 
arbitrary container with arbitrary contents.

— the equal sign which identifies both identities 
and permissible pattern substitutions. Its twin, 
the not-equal sign identifies perceptually 
obvious difference.7 The double-arrow ⇔ 
identifies equality between entire equations.

— various abbreviations and meta-symbols that 
stand in place of arrangements that otherwise 
would be awkward to represent. The two types 
include the meta-concepts ⇒, ⇔, indeterminate,  
and void, and the finite list abbreviations ... 
and ..N...
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zoo
( ) [ ] < >

A a B b

=  ≠

⇒ ⇔
...

..N..

void



 bracket   name          use       chapters

GENERAL

  { }   set delimiter  conventional sets
  〔 〕   shell     value-neutral outermost      2,6-10,14
  〈 〉   logic boundary  logic, not numeric       10,15

UNIT-ENSEMBLES,  DEPTH-VALUE

  ( )   parens    depth-value group       3-4
  < >   angle     negative ensemble       2
  〘 〙   double-struck shell substitution operator        2-4,14
  ｟ ｠   double-struck round depth-value base      11-12

JAMES  ALGEBRA

  o, ( )   round     numeric, exponential        6-13
  [ ]   square    non-numeric, logarithmic   6-13
  < >   angle     reflection, inverse       6,10-13

Figure 5-2:  List of typographic delimiters

5.2  Remarks
Figure 5-2 lists all of the typographic brackets used in 
this volume. They fall into three distinct categories. The 
general delimiters are not formally part of James algebra; 
they are in the metalanguage. Depth-value delimiters are 
described in Chapters 2 through 4. The bracket system 
used in the rest of the volume is limited to the three James 
boundary forms: round, square, and angle. The empty round 
bracket has two representations, o and ( ), for typographic 
convenience. To reiterate, the “shape” names are arbitrary 
and have no connection to geometry.

The overall motivation is to learn a new and quite different 
way of thinking and to apply that thinking to elementary 
arithmetic. What we discover along the way is that con-
ventional arithmetic appears to be an accumulation of 
design decisions that, taken as a whole, lack conceptual 
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Endnotes
1. opening quote: A. Einstein (1977) Reader’s Digest  October 1977.

2. because they follow from the premises: A. Whitehead & B. Russell 
(1910) Principia Mathematica  Preface p.v.

3. to choose the one which seems simpler and easier: Whitehead & Russell, p.91.

4. with one concept, that of distinction: Spencer Brown, Laws of Form, p.1.

5. but are, strictly speaking, mere typographical conveniences: Whitehead 
& Russell, p.11.

6. the definition of “=” is is-confused-with: This perceptual perspective 
follows Spencer Brown’s informal definition of the equal sign, p.69.

7. the not-equal sign identifies perceptually obvious difference: The asym-
metry between = and ≠ is surprising. If two forms are not equal, we must be 
able to see the difference. If two forms are equal, it may not be immediately 
apparent since they may look different. Axioms, then, identify forms for 
which we cannot trust our perceptions directly. Axioms are designed confu-
sion. The equal-sign unifies what we might otherwise believe to be different.

coherence. Over thousands of years, we have stumbled our 
way into an arithmetic that works, but like all evolutionary 
processes, the assembly of parts is rife with unnecessary  
and redundant appendages. We teach this conceptual jum-
ble to our children and as a consequence they too continue 
to stumble through elementary arithmetic, most leaving 
school loathing mathematics. 

The three pages that follow the Concepts page show all of 
the pattern transformations and interpretations included in 
this volume: the axioms, theorems, frames, and maps. The 
two final pages show the transformation patterns intro-
duced in Volume II and Volume III. To take the bull by 
the horns, how on Earth can any human wade through the 
apparently cryptic representations that follow? By learning 
to identify some simple patterns.
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VOID
 Void has no properties. (Nothing is not something.) 
 Form is either not nothing or an illusion. 
 Void-equivalent forms may vary in structure but not in relevance.
 Void-equivalent forms are syntactically inert and semantically irrelevant. 

CONTAINERS 
 Containers represent distinctions. 
 Everything is a container. 
 There is only one relation, contains. 
 Empty containers are units. 
 Containers are both object and process.

STRUCTURE
 Forms are patterns of containment. 
 Valid forms can be constructed physically.
 Forms can be represented in many multi-dimensional notations. 
 Containers support nesting and not sequence. 
 Containers are not limited to a specific capacity (no arity). 
 The contents of any container are mutually independent.

AXIOMS
 Axioms subdivide existent forms into discrete groups. 
 Axioms define the forms that are void-equivalent.
 All canonical forms are unequal.

EQUALITY 
 Containers with equal contents are equal. 
 Equals can be substituted for equals. 
 Removing identical outer boundaries maintains equality. 
 Removing equal contents maintains equality. 
 Equality is quantized dynamically by transformation steps. 
 Forms change meaning only when they cross a boundary.

ARITHMETIC
 To count is to identify, categorize, indicate, fuse and label. 
 Addition is putting forms into the same container. 
 Multiplication is putting square forms into a round container.
 Exponential and logarithmic bases are defined by the interpretation.
 Inverses are represented by the same boundary in different contexts.

Concepts



page

127

Structure

FRAME

 (A [ ]) = void       dominion          242
            emit ⇄ absorb
 ([A][o]) = A       indication          218
            unmark ⇄ mark
 ([A][o..N..o]) = A..N..A    replication          219
            replicate ⇄ tally

REFLECT

 <<A>> = A        involution          241
            wrap ⇄ unwrap
 <A><B> = <A B>       separation          241
            split ⇄ join
 <A <B>> = <A> B       reaction          242

 (A  [<B>] ) = <(A  [B] )>    promotion          244

 (A <[<B>]>) = <(A <[B]>)>    promotion
            demote ⇄ promote

Theorems

ARITHMETIC

        ( )   ≠ void       existence          168

 ( ) ( ) ≠ ( )       unit accumulation         170

 ([ ]) = [( )] = void      void inversion         184

 <( )> ( ) = void       unit reflection           46

ALGEBRA

 ([A]) = [(A)] = A      inversion          184
            enfold ⇄ clarify
 (A [B C]) = (A [B]) (A [C])   arrangement         193
            collect ⇄ disperse
 A <A> = void        reflection          241
            create ⇄ cancel

Axioms
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Logic
ARITHMETIC

      〈 〉〈 〉 = 〈 〉    calling
       〈〈 〉〉  = void     crossing

ALGEBRA

     〈A 〈 〉〉 = void      dominion
        〈〈A〉〉 = A     involution
     A 〈A B〉 = A 〈B〉    pervasion

Depth-value

   •..N..• = (•)      group

     (a)(b) = (a b)     merge

     ｟N｠ = ([N] o)    depth-value

Ensembles

   〔a|b|c〕 = 〔a b c〕    fuse
   〘A • E〙 = 〘E • A〙    commute
       A  <A> = void      reflect

Frames
  (   [   ]) = void      void

  (   [ A ]) = A       inversion

  ( A [   ]) = void      dominion

  ( A [B C]) = (A [B]) (A [C])   arrangement

  ([A][ o ]) = A       indication

  ([A][ N ]) = A..N..A     cardinality

  ( A [ B ])       magnitude

  ( o [ N ])        unit magnitude

  (<o>[ N ])        decimal

  ( J [ A ]) = <A>      J-conversion
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Maps
         expression         ☞         James form

UNITS
       1         ( )
       0         < >
      –1        <( )>
      –∞        [ ]
     log# –1      [<( )>]

INVERSE
       A          A
      –A         <A>
     1 ÷ A      (<[A]>)

ARITHMETIC
     A + B         A     B
     A – B         A    <B>
     A x B      ([ A ] [ B ] )
     A ÷ B      ([ A ]<[ B ]>)

BASE
     BA      (( [[B]] [ A ]))
     B–A      (( [[B]] [<A>]))
     B1/A      (( [[B]] <[A]>))
     logB A       (<[[B]]>[[A]])

EMBEDDED BASE
     #       (o)
     #A       (A)
     log# A       [A]

PARALLEL

 counting   1 + ... + 1     o ... o 

 addition    A + ... + Z     A ... Z 

 multiplication  A x ... x Z   ([A]...[Z])

 fraction   (A x...x M) ÷ (N x...x Z)  ([A]...[M]<[N]...[Z]>)
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    <A>   =   (［A］)      two-boundary angle

    [A]   =  ［(［A］)］     two-boundary square

Two Boundary

      A = B ⇔  A <B> = void = <A> B  reflection bridge

      A = B ⇔ {A} = {B}     compose context

    {A} = {B} ⇔ {A C} = {B C}   C ≠ [ ] compose content
                        decompose ⇄ compose
  (A) = B ⇔  A = [B]     equality inversion
                        cover ⇄ cover
  A C = B  ⇔  A = B <C>    C ≠ [ ]  equality reflection
                        move ⇄ move

Equations
Volume II

AXIOMS
   [ ]    [ ]   ⇒   [ ]      unify
  <[ ]> <[ ]> ⇒   <[ ]>      unify
                         → unify  
   [ ]  <[ ]> ⇒ indeterminate   indeterminacy

THEOREMS
    (A <[ ]>)  = (<[ ]>)     dominion II
                        emit ⇄ absorb
    (A [[ ]])  =   [ ]     dominion III
     [[ ]]  = J <[ ]>     double-square
    [[[ ]]] =   <[ ]>     triple-square

INTERPRETATIVE AXIOM and THEOREMS

  (<[ ]>) = <[ ]> = [<[ ]>]    infinite interpretation
    <(<[[ ]]>)> ≠  void       infinitesimal

Volume III
Non-numeric
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THEOREMS
   J = [<o>]       definition of J
   <A> = (J [A])      J-conversion
   J J = void       J-void object
   [<(J)>] = void      J-void process
   ([J][2]) = void     J-void tally
   J = <J>       J-self-inverse
   [<(A)>] = A J      J-transparency
   A (J [A]) = void     J-occlusion
   J (J [J]) = void     J-self-occlusion
   J = <[A]>[<A>]     J-invariant
   [<J>] = J [J]      J-absorption
   <(J/2)> = (<J/2>)    J/2-toggle

PARITY
    N even  ([J][N]) = ([J][<N>]) = void  

J-parity
 

    N odd  ([J][N]) = ([J][<N>]) = J

    N even  J ([J][N]) = J     
J-parity

    N odd  J ([J][N]) = void  

    N even  J ([J]<[N]>) = ([J]<[N]>)  
J-fractions

    N odd  J ([J]<[N]>) = void  

J FRAMES
   (J [ A ]) = <A>     J-conversion
   (J [<A>]) =  A     J-involution
   (J <[A]>) = <(<[A]>)>   J-angle
   (J [J]) = J      J-self

COMPLEX
   i  ☞   (J/2 [o]) = (J/2)  form of i
   π  ☞   (J/2 [J])    form of π
  a + bi  ☞ a (J/2 [b])    form of complex number

J Patterns
Volume III
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Perspective

  Chapter 6 

Notation...is extremely important in mathematics. 
A seemingly modest change of notation may suggest

 a radical shift in viewpoint.1 
— Barry Mazur (2003)

Perspective

  Chapter 6 

James algebra is named after Jeffrey James. He and I 
developed the algebra as his 1993 Master’s Thesis at 

University of Washington, A Calculus of Number Based 
on Spatial Forms. This work has not been published pre-
viously. Most of the results in Chapter 7 through Chapter 
12 are included in Jeff’s thesis. James numbers take their 
inspiration from Charles Sanders Peirce, who introduced 
boundary logic at the turn of the 20th century; from Laws 
of Form, the seminal work of the late George Spencer 
Brown; and from the work of Professor Louis Kauffman 
at the University of Illinois at Chicago.

James algebra is a radical reconceptualization of how we 
represent and think about conventional numeric operations 
{+, –, x, ÷, ^, √, log}. Like the unit-ensembles described 
in Chapter 2, James forms are additive. Forms are added 
together by putting them together into the same container.2 
Unlike unit-ensembles, multiplication is represented by a 
specific configuration of boundaries, rather than as the 
substitution operation. The advantage of this approach, 
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especially during transformation, is that multiplication can 
be treated as a static pattern. By revoking the commuta-
tivity of substitution, we return match-and-substitute to 
its position as the only method of transformation, a generic 
mechanism that converts axioms into theorems and tools.

The axioms of modern algebra evolved in tandem with 
linear typography and with sequential (causal) thinking. 
The axiomatic structure of algebra and set theory do 
not capture the essence of what numbers are nor how 
they work since neither system rests upon the Additive 
Principle. We will presume that the manipulative use of 
numbers throughout history and the modern symbolic 
perspective on numbers both refer to the same numbers. 
Different constructions of the same concept provide alter-
native perspectives on that concept, perspectives that can 
enrich and generalize our current understanding. Our 
conventional perspective on arithmetic, the one currently 
taught in schools, is extremely useful for business and 
for scientific professionals, quite useful for sequential 
computers, and definitely a nuisance for educators, for 
students, for a great majority of Americans, and for par-
allel, concurrent and distributed computation.

6.1  Diagrammatic Math
Euler was first to propose a diagrammatic method of 
logic. His Euler diagrams associate embedded and over-
lapping circles with logic syllogisms. He explains:

The foundation of all these forms is reduced to two 
principles, respecting the nature of containing and 
contained. I. Whatever is in the thing contained 
must likewise be in the thing containing, and II. 
Whatever is out of the containing must likewise be 
out of the contained.3 

During the nineteenth century, non-Euclidean geometries 
were discovered and formalized. The previous two thousand 
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years had established Euclid’s geometry as the sacrosanct 
definition of mathematical rigor.4 But Euclid’s parallel line 
postulate was too narrow, it worked only for flat surfaces. 
There are geometries, such as the surface of a sphere, for which 
the parallel postulate does not hold. In the nineteenth century, 
this trauma of discovery shook the mathematical world so 
fundamentally that the ancient Greek perspective of deriv-
ing mathematical knowledge from diagrams was completely 
abandoned, in favor of purely symbolic approaches. Herbert 
Simon: “Rigor, it was believed, called for reasoning to be for-
malized in symbols arranged in sentences and equations.”5

Hilbert’s program at the turn of the twentieth century set 
out to express mathematical reasoning in finite strings 
of symbols. Mathematical diagrams and other sensory/
experiential forms were widely purged from rigor-
ous mathematics. In particular Euler diagrams, Venn 
diagrams, Frege’s deduction trees and C. S. Peirce’s exis-
tential graphs, each of which has been shown to be sound, 
were all suppressed and largely forgotten. 

The syntax/semantics barrier is deeply implicated in 
the migration to linear structure. The meaning of words 
and strings of symbols became entirely separate from 
the words and symbols themselves. Understanding was 
buried underneath arbitrary obscurity. Symbols require 
augmentation, meaning must be added separately. Here’s 
Larkin and Simon:

The fundamental difference between our diagram-
matic and sentential representations is that the 
diagrammatic representation preserves exactly the 
information about the topological and geometric 
relations among the components of the problem, 
while the sentential representation does not.6

However, the Participation Principle reminds us,

Strings of symbols do impact meaning 
by limiting how we think about what we are describing. 

Leonhard Euler
1707–1783

John Venn
1834–1923

Gottlob Frege
1848–1925

Charles Sanders Peirce
1839–1914

Euclid
circa 450–350 BCE
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There is, however, a complication about language 
as a method of representing a system, namely that 
words which mean relations are not themselves 
relations, but just as substantial or unsubstantial 
as other words. In this respect a map, for instance, 
is superior to language, since ... a relation is repre-
sented by a relation.

Bertrand Russell continues,

I believe that this simple fact is at the bottom of the 
hopeless muddle which has prevailed in all schools 
of philosophy as to the nature of relations.7

James algebra builds all structure out of icons, images  
and diagrams, out of containers that support the visual 
relation of inside and outside. Logicians Barwise and 
Etchemendy:

Diagrams are physical situations. They must be, 
since we can see them.... By choosing a representa-
tional scheme appropriately, so that the constraints 
on the diagrams have a good match with the con-
straints on the described situation, the diagram can 
generate a lot of information that the user never need 
infer. Rather, the user can simply read off the facts 
from the diagram as needed. This situation is in stark 
contrast to sentential inference, where even the most 
trivial consequence needs to be inferred explicitly. 8

James algebra does not embrace linear, typographic 
communication. James forms are spatial. They are iconic 
rather than symbolic. The typographic representation 
used herein shows containers as string delimiters such 
as ( ), with the image of the container broken into a left 
and a right half. However, the sequencing and the frac-
turing of boundaries is an accident of the way that our 
typewriters and our textual languages are constructed, 
and a potentially confusing distortion of the image of a 
container.9

Bertrand Russell
1872–1970
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Our theme is that numbers are sensory, diagrammatic, 
experiential. We do not need to obscure how arithme-
tic works with veils of symbols and tables of relations. 
Hiding meaning behind memorized convention both 
limits and distorts thought. Alfred North Whitehead: 
“By relieving the brain of all unnecessary work, a good 
notation sets it free to concentrate on more advanced 
problems.”10

Boundary Algebra
First and foremost, James forms are void-based. Void is 
intended to look like what it means. It literally does not 
exist. In text the label void is a something, it’s a word. Words 
are not nothing. They support reference and eventually 
communication. In contrast, nothing is not something, it 
does not support reference. Void is in our shared descriptive 
metalanguage, however it is not part of the James system.

Void-equivalent structures and patterns are irrelevant 
to meaning. These forms exist solely in notation. Void-
equivalent forms are illusions that arise from an empty 
page. Void-equivalence implies that

— Absence has no properties.
— Containers are permeated with void forms.
— Void-equivalent forms are background potential. 

They can be freely created and deleted.
— Empty containers can be seen as units. 
— Transformations create and delete structure.

James forms are containers with these properties

— Forms are patterns of containment.
— Forms are patterns of physical containers.
— A container is an object from the outside and a 

process from the inside.
— Contents are mutually independent.
— Concepts are networks of contains relations.
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A calculus consists of a notation for representing objects, 
a collection of permitted transformations and a collection 
of basic facts. We are representing physical containers 
by delimiting boundaries and basic facts by empty con-
tainers. Common use of numbers and arithmetic can be 
seen as putting things into containers and rearranging 
those containment relations by following the pattern rules 
defined by the three James structural axioms. 

The physicality of containers means that we can viscer-
ally interact with James forms. We can elect, for instance, 
to build James forms out of physical objects such as 
blocks, or out of physical enclosures such as rooms. The 
James axioms define the coordinated behavior of vari-
ous patterns of containment. A sequence of structural 
transformations can be animated. The creation, deletion 
and rearrangement acts that constitute both proof and 
computation can be presented in videos as dynamic ani-
mations. Many transformations can happen at the same 
time since (other than containment) each container is 
independent of the others.

The inside of a container supports concurrent transforma-
tion of its contents, just like the inside of a theater full of 
people supports concurrent breathing. In that metaphor, 
all transactions are between a person and the air in the 
room, between content and context. There is no interac-
tion between contents, no direct connections between 
people in the room. All may be immersed in (contained 
by) watching the movie. None are watching the other 
movie-goers breathe.

In James algebra, there are no instances of counting, 
ordering or grouping because there is no imposition of 
structure other than that of containment. Importantly, 
only one axiom permits rearrangement of structure, the 
forte of string languages. The other two axioms (and most 
of the theorems) are void-based, they eliminate structure 
by erasure/deletion, by casting structure into void.

formal arithmetic 
is putting stuff 

into the right boxes
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6.2  Container Types
James algebra uses three distinct types of containers to 
express numeric and non-numeric structure. Figure 6-1 
shows the round boundary, the square boundary, and 
the angle boundary. In this volume, we’ll stick to the 
interpretation of James forms in Figure 6-1.11 

Boundary forms are icons. Pictorial forms trigger not 
only different conceptual models, they trigger different 
physiological processes. Transcription is therefore more 
than a cognitive shift, it implicates different perceptual 
systems and a different behavioral vocabulary.

The only relation within a boundary calculus is that of 
containment, a minimal conceptual basis consisting of 
one binary relation. The contains relation is quite general. 
When expressed within logic, containment can be inter-
preted as implies. When expressed as an acyclic network, 
containment is directly-connected-to. When expressed as 
a set, it’s called is-a-member. When expressed as a number, 
it is successor. When expressed as a map, it’s shares-a-com-
mon-border. Within the context of a pile of blocks, contains 
becomes supported-by. When seen as a family relationship, 
it is parent-of. When described as an abstract mathemati-
cal structure, it is a rooted tree. All of these metaphors share 
a collection of common characteristics that are concretized  
by the properties of physical containers. The fundamental 
concept underlying containment is distinction: a container 
distinguishes inside from outside.

      boundary        unit   interpretation       operator      interpretation

      angle          < >        0          <A>     –A

    round      ( ), o       1           (A)          #A

    square     [ ]       –∞          [A]    log# A

Figure 6-1:  James units and operations
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Volume II  looks at the structure that the binary relations 
contains, implies, is-a-member, successor, and parent-of 
have in common: each makes a distinction between con-
tainer and contained. This chapter provides an initial 
discussion of the mechanisms of the James pattern alge-
bra of distinctions.

Pattern Axioms
Figure 6-2 shows the pattern axioms of James algebra, 
the transformations that are designed to define the behav-
ior of the arithmetic and algebra of numbers.

Calculi based on an equal sign are called algebras. The 
algebraic style of boundary math includes maintaining 
equality by transforming containment relations that 
match clearly defined patterns. If a containment pattern 
does not match a rule, then it cannot be changed. More 
generally the Axiomatic Principle constrains what can 
be done within a formal system.

Axiomatic Principle
If it is not explicitly allowed, then it is forbidden.

Two of the three James axioms define the interplay 
between round and square boundaries, while the third 
defines the behavior of angle boundaries. It is convenient 

  ([A]) = [(A)] = A      inversion
             enfold ⇄ clarify

  (A [B C]) = (A [B]) (A [C])   arrangement
             collect ⇄ disperse

  A <A> = void        reflection
             create ⇄ cancel

Figure 6-2:  Pattern axioms of James algebra
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to be able to identify the direction of application of each 
axiom when describing computational steps. Figure 6-2 
also provides these names. We will later develop several 
convenience theorems. The constructive demonstration 
of these theorems never strays far from the three simple 
axioms. All transformations of containment patterns are 
essentially simple, there are no particularly subtle or cre-
ative theorems in this volume.

The most important characteristic of these axioms is that 
two of them specify how to delete structure. Both impli-
cate only one form (labeled A), so that they both require 
only simple pattern-matching. Remarkably, this leaves 
all of the complexity of numeric algebra isolated in one 
pattern transformation. 

In general, a variable within an algebra stands in place of 
an arbitrary form. In James algebra, this idea is slightly 
more complex. Since the algebra is void-based, a variable 
might stand in place of nothing. Variables that are not 
void-equivalent stand in place of a single container and its 
contents. It is a violation of the structure of containment 
to have multiple forms standing in the same space without 
an outermost container. However, it is often typographi-
cally convenient to leave the outermost container implicit. 
We can display, for example, either 〔oooo〕 or ([oooo]) 
or oooo, with the understanding that the outermost con-
tainer of oooo may be unwritten but it is certainly present.

Deleting variables exposes the arithmetic structure of a 
form. The algebra of James forms is thus strongly con-
nected to its arithmetic. 

Partial Ordering
Forms are specific patterns of containment. All the pos-
sible containment patterns constitute the language of 
James forms. The mathematical abstraction that comes 
closest to describing James forms is a partial ordering. 
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A partial ordering is a graph consisting of nodes and 
links. The nodes are containers that are delineated by a 
boundary. The links are containment relations. A phys-
ical, or finite, strict partial ordering has these defining 
characteristics:

— There is a top node and a bottom node.
— There is a direction, every node is on a path 

between top and bottom.
— Links identify specific directional relations 

between nodes.
— Nodes bound links.

Within the theory of relations, a partial ordering has 
three characteristics

— irreflexive: no node is linked to itself
— antisymmetric: no node is above or below itself
— transitive: you can travel to distant nodes

One objective of Volume II is to look at these rather 
strange notions in detail. In general they fail to convey the 
intent of a containment pattern. Consider contains to be 
parent-of. You cannot be your own parent (irreflexive), 
and you can’t be your parent’s parent (antisymmetric). 
As well, your parents are not the parent-of your chil-
dren (intransitive). Technically then containment is not 
a partial ordering because it is not transitive. There is a 
transitive concept that we might call contained-at-any-
depth. In our example it would be the ancestor relation. 
But the deeper point is that using conventional abstrac-
tions based on sets does not particularly help us to think 
differently about the formal structure of distinction.

Interpretation
Figure 6-3 provides a quick introduction to the inter-
pretation of boundary configurations that we will use. 
These patterns unify counting, adding, multiplying, 
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raising to a power, and the assortment of inverse opera-
tions. However, numbers and numeric operations are but 
one interpretation of what a container form might mean. 
When translating from one language to another (here, for 
example, between configurations of containers and con-
ventional arithmetic), the more primitive, less redundant 
and therefore foundational language will have multiple 
alternative interpretations within the more sophisticated 
and complex language. Thus, the single boundary con-
figuration A <B> can be read both as A + –B and as A – +B. 
Interpretation from a  simpler foundation is one-to-many.

    expression       ☞             form

INVERSE
      A             A
     –A            <A>
    1 / A         (<[A]>)

ARITHMETIC
    A + B            A     B
    A – B            A    <B>
    A x B         ([ A ] [ B ] )
    A / B         ([ A ]<[ B ]>)

BASE
    BA         (( [[B]] [ A ]))
    B–A         (( [[B]] [<A>]))
    B1/A         (( [[B]] <[A]>))
    logB A         (<[[B]]>[[A]])

EMBEDDED BASE
    #            (o)
    #A            (A)
    log# A           [A] 

Figure 6-3:  Algebraic operations to patterns of containment
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A contains B

symbolic

iconic

concrete

experiential

6.3  Multidimensional Form
A primary reason for going to all the trouble to learn this 
new sensual language is to learn new ways of thinking. It is 
not the concepts represented by the James language that are 
multi-dimensional, it is the language itself that has different 
dialects or “notations” expressed in different dimensions. 
One implication is that a series of transformations can be 
animated. Another implication is that many transforma-
tions can occur concurrently, all at the same time.12

When you stop to consider the rationality of symbolic 
representation, it becomes clear that symbols are highly 
discriminatory against our physical evolutionary her-
itage. The vast majority of the neurons in our brains 
are dedicated to managing the interface of our physical 
body with physical reality. Everybody lives in a body, 
only a very few of us live in the conceptual fantasy of 
the Platonic reality associated with mathematics.13 

Abstraction is of interest to only a small portion of a 
brain; the skills of abstraction are exceedingly difficult 
to teach. The symbolic math currently taught in schools 
expects us to abandon both sensation and experience in 
favor of unnatural cognitive acts. No wonder students 
find it difficult to learn this disembodied language.

Boundary languages are visceral. Interpretation will 
remain constant as the boundary representation is tran-
scribed across dimensions, from 1D strings to 2D icons to 
3D architectures to 4D temporal experiences. There is no 
abstract/concrete dichotomy, so that boundary languages 
are much easier to understand. No mind/body split, so 
boundary forms are much easier to tolerate. In contrast, 
string encoding cannot be experienced, it must be learned 
via memorization. Consequently string languages remain 
necessarily cerebral. Mathematical nominalism holds 
that mathematics is about objects that exist. Container 
languages provide nominalistic consistency by requiring 
that formal concepts too have a manifest form. 
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It is a distinct advantage to represent mathematical 
concepts across many different spatial formats, not only 
symbolically but also diagrammatically, physically and 
experientially. The printed page limits representation 
to symbolic and iconic forms, but by projecting volu-
metric forms onto paper, we can approximate concrete 
and experiential languages. The image of a box can elicit 
imagination of a box. Leibniz: “The best signs are images; 
and words, insofar as they are adequate, should represent 
images accurately.”14

Dialects
Containment relations themselves can be expressed not 
only as configurations of containers, but also as maps, net-
works and symbolic equations. Most string languages can 
also be expressed as spatial networks. A difference, though, 
is that a James icon embodies its operational semantics. In 
effect there is no distinction between form and intent. The 
container boundary is the only diagrammatic component 
we will need. It visually and computationally preserves 
the dependency of containment, which itself can be inter-
preted as nesting, sequence, stacking, connectivity and 
several other types of physical relationship between con-
tainer and contained, as illustrated in Figures 6-4 and 6-5. 
Containers provide a built-in visualization of dependency, 
appealing for both form and interpretation to our hands 
and our eyes, rather than to our ears and vocal cords. 

Figure 6-4 shows the James form of multiplication 
expressed as one-, two-, and three-dimensional containers.

— The string dialect is digital and encodable. The 
language consists of delimiters in fractured 
bracketing relationships with one another.

— The bounded dialect shows two-dimensional 
containment. The language consists of 
enclosures in nesting relationships with one 
another.
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— The block dialect is manipulable. The language 
consists of physical objects in stacking 
relationships with one another.

Figure 6-5 shows James multiplication in some other spa-
tial dialects of containment, including two-dimensional 
maps and paths, three-dimensional physical rooms and 
dimension-free networks.

— The network dialect is a traversable acyclic 
graph. The language consists of nodes and 
links.

— The map dialect is a traversable territory. 
The language consists of areas with shared 
borders.

— The path dialect shows border crossings that 
define the boundary form. The language 
consists of a single instance of each type of 
boundary, together with a directed path 
crossing the boundary archetypes.

— The room dialect is a three dimensional 
environment inhabited by a participant. The 
language consists of rooms and doors.

For examples of James arithmetic in each of these nota-
tions, delete the variables A and B in Figure 6-4 and 
Figure 6-5.
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Hybrid Notation
Hybrid notation mixes boundary structure with special 
symbols that stand in place of specific boundary forms. 
Usually these special symbols are reminiscent of con-
ventional notations. Special symbols will be necessary 
in order to make the upcoming boundary forms of π, 
i, cosine, and the like easier to read. A hybrid notation 
makes unfamiliar forms a bit more readable. It is partic-
ularly handy when the same boundary pattern occurs 
multiple times within a form. 

The archetypical special symbol is the variable A, which 
stands in place of any James form. Naming boundary 
structures is safe so long as unique names are assigned to 
unique patterns. And of course we can conveniently move 
back and forth between a name and the form that the 
name identifies. We can also engage in symbolic abbre-
viations for both typographic and reading convenience. 
We’ll sometimes use natural numbers, for example, to 
stand in place of ensembles of units. It will be convenient 
to use the special symbol “5”, for example, to stand in 
place of the form ooooo. Sometimes however it is con-
ceptually important to show these ensembles explicitly. 

There are two abbreviations that we will be seeing a lot 
so they may as well be introduced now. The hash mark, 
#, indicates an arbitrary base for polynomial numbers and 
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for exponents and logarithms. A new idea facilitated by 
James algebra is that exponents generally do not need a 
base for transformation to move forward. In an algebraic 
context, which number is being multiplied together many 
times (i.e. the base) often does not matter. Often an entire 
form is standardized for one base only. The base then is 
a global feature of the form rather than a local feature of 
each boundary, an example of the Communality Principle. 

J represents another new idea, a new imaginary num-
ber, the logarithm of negative one. The special symbol J 
stands in place of the boundary configuration [<( )>]. J 
is the subject of Volume III and makes only a few appear-
ances until then.

Object/Process
How should we think about –3, or 1–3, or 1/3, or √3, or 
log 3? These representations signify exact numbers, yet 
somehow we have embedded the operations of subtrac-
tion, division, root and logarithm into their notations. 
Can we do no better than to describe some numbers as 
operations on other numbers? Can combinations of units 
and operators legitimately be called numbers? This ques-
tion can be phrased in the simplest of terms: 

Is 1/3 a single number 
or is it two numbers combined by an operation?

Does 1/3 explicitly identify an actual number? Yes, in 
conventional terms, it is a member of the class of rational 
numbers. Do the rational numbers cover the number line? 
No, no more than the natural numbers cover the number 
line. Does 1/3 explicitly identify a ratio or comparison? 
Yes, in conventional terms a fraction is a ratio arising 
from the comparison of the magnitude of two natural 
numbers. Here we compare 1 to 3. 1/3 identifies the pro-
portion of the ensemble ••• that is •. So in a conventional 
sense, 1/3 is both one and two numbers, depending upon 
our purpose.

(A) ☞ baseA

[A] ☞ logbase A
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The use the same notation to represent both concept 
and process is an example of the Participation Principle 
that is widespread in mathematics. What a number 
means depends upon how you look at it. This dual usage 
is extremely handy, since it permits an expert in mathe-
matical abstraction to arbitrarily shift the interpretation 
of an expression between object and operation. 3 can be 
seen both as a number and as an operation on numbers, 
depending upon what is most convenient at the time. 3 
can represent a count, or it can represent an act of repli-
cation. Not only does 1/3 behave as both a number and a 
comparison, the transformation rules for operating upon 
the structure 1/3 can differ depending upon its intended 
interpretation.15 That’s why expertise is needed to use 
conventional notations.

We are also asking an educational question: is this flexibil-
ity helpful to those learning how to manipulate numbers? 
Is the object/operator duality an essential aspect of what 
we mean by number, or is the duality an artifact of one 
particular way of looking at numbers? Might the dis-
tinction between object and operator be illusion, perhaps 
imposed by abstractions that are more complicated than 
is necessary? Are students and their teachers aware of the 
entanglement of things and processes? Why do fractions 
traumatize so many young students?

The object/operator duality of conventional numbers is 
reminiscent of the particle/wave duality of atomic particles. 
The founders of quantum mechanics became comfortable 
with the idea that an electron will behave both like a wave 
and like a particle, depending upon how we choose to 
observe it. What an electron is depends upon how we 
want it to appear. Similarly, what a number is depends 
upon what we want of it. Perhaps we should develop a 
conceptually simple arithmetic in which numbers do not 
take on the properties of operators. In which, for example, 
numbers add but do not multiply.  Perhaps numbers can be 
simplified by limiting how they are permitted to behave.
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James numbers provide yet another perspective on the 
relationship between object and operator. Rather than 
embedding operations into the structure of numeric 
forms, James algebra uses viewing perspective, a feature 
of container-based math, to distinguish between object 
and operation. When we look at the outside of a container, 
ignoring its contents, then the container appears to be a 
very simple object, a container. When we look at the con-
tents inside a container, the container itself is a process, a 
very simple process, contains. Viewed from the outside, a 
James container can represent a number. Looking at the 
inside shows us how that number is constructed. This is 
very similar to our use of function notation, where f(x) 
stands in place of the intended result of the process f act-
ing upon the object x. But f(x) shows an inconsequential 
component of the inner structure, the arbitrary label used 
to access the functionality identified by the label f. The 
difference is that the contents of James containers are 
the entire inner structure. 

6.4  Features
James numbers share these features with the other 
boundary systems:16

— There are significantly fewer abstract concepts.
— Everything is a containment relation.
— Void-equivalent forms can be ignored. 
— Contents do not interact.
— Conventional operations condense into a few 

structural axioms.
— Proof and computation are achieved by pattern 

substitution and deletion.
— The algebraic theory of groups is not relevant.

Here is a slight expansion of each of these ideas within 
the context of James algebra.

inside/process

(  )

outside/object

( )
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Significantly fewer concepts 

Perhaps the most challenging new idea is that many of 
the conventional concepts within arithmetic and algebra 
are unnecessary in order to conduct the conventional 
operations of arithmetic and algebra. Arithmetic can be 
far simpler than what we have been taught. The essential 
concepts of James algebra do not include zero, commuta-
tivity, associativity, arity, one-step-at-a-time processes, 
and symbolic strings. Instead there is a deep visceral 
unity across counting, addition, multiplication, power, 
subtraction, division, roots and logarithms.

Containment relations only 

James algebra is based on containment relations. What is 
inside a specific container tells us what that container acts 
upon, or contains. Different concepts are expressed by three 
different containment relations, which we have represented 
as ( ), [ ] and < >. A numeric interpretation is not necessary 
and is not embodied within the axioms of the algebra. 

Semantic use of void 

The absence of a container has meaning. We can interpret 
absence as numeric zero. An empty container is a unit. 
Emptiness creates unity. Unity is absence of interior parts. 
The interior of every container, even those with contents, 
is pervaded by void. Void-equivalent forms are everywhere 
and in unlimited supply. Bounded space cannot and does 
not have properties, unlike the sequencing properties of 
the spaces between these words and the spaces between 
the characters of each word. Void is not synonymous with 
emptiness, it is more like the physical space that is under-
neath all physical objects. This leads to the fundamental 
Principle of Void-equivalent Forms (and of the void itself).

Void Equivalence
Void-equivalent forms are syntactically inert 

and semantically irrelevant. 
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In the numeric domain, void-equivalent forms are both 
blind to sign and blind to multiplicity.17

Independence of contents 

There are no direct relations between contents. The only 
relation is between a container and each of its content 
forms. Another way to say this is that the void shared by 
contents of the same container has no properties and thus 
cannot support relations between contents. This explicit 
independence permits the implementation of extensive 
parallelism within forms. Concurrency is a native mode 
of thought, analogous to sight rather than to speech.

Algebraic operations condense into a few patterns 

Three generic transformations on patterns of containment 
are taken as axioms. An interpretation of round-brack-
ets as powers and square-brackets as logarithms permits 
ease of mapping James forms to conventional arithmetic. 
When nested, the two types of boundary maintain alter-
nating exponential and logarithmic contexts which permit 
smooth transition between addition and multiplication.

Proof by pattern-matching and substitution

Axioms statically define patterns that are equivalent, and 
dynamically permit transformation between patterns. 

Structural axioms are implemented by matching a given 
structure to a permitted pattern and then replacing it 
by a certified equivalent structure. Two axioms identify 
void-equivalent forms, permitting deletion of structure. 
The third permits rearrangement. This makes computa-
tion and verification short and elegant.

Absence of the laws of algebra 

Commutativity and associativity are interpreted as 
sequential concepts that are not relevant to a spatial, 
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parallel form of arithmetic.18 There is no ordering imposed 
on the contents of a container. Grouping is defined solely 
by containment. Unlike functions which specify a precise 
number of arguments, a container can accommodate any 
number of contents (arguments). There is no concept of 
arity. The 0 null object of addition and the 1 null object of 
multiplication are opposite sides of the same distinction, 
1 from the outside and 0 from the inside. 

Incidentally, if you are counting, we have eliminated 
three of the five fundamental properties of algebraic 
groups. From the James perspective only inverse and 
distribution are fundamental.19 

6.5  Strategy
James algebra may not be initially friendly to the eye, 
primarily due to its unfamiliarity. It becomes friendly to 
the mind only after exerting some effort to achieve famil-
iarity. Familiarity can be achieved cognitively or iconicly 
or physically. Do not expect to easily recognize a radical 
revision of the mathematics that has been standardized 
across the globe for a century. Do not expect to easily 
shed the perspective embodied within twelve years of 
grade school and high school mathematics courses. Or, if 
you choose, simply adopt the mind of a novice, someone 
who has never encountered a number greater than two. 

Mathematical concepts themselves are defined by 
containment patterns. We do not have to abandon the 
familiar  concepts of symbolic math, since carrying them 
into a reading of a James form at least provides comfort 
in familiarity. The adventure though is in finding other 
concepts, iconic concepts, overlaid and interacting with our 
familiar concept of number. It is these new perspectives 
that provide the motivation to explore. Could it be that 
the categories of numbers that we hold to be important 
(naturals, integers, rationals, irrationals, transcenden-
tals, reals, imaginaries) have accreted over time without 
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fundamental organization? Might there not be an alter-
native classification of number that makes more sense? 
Similar to Conway numbers20 (aka surreal numbers), 
this exploration is not yet pragmatic; the goal is simply 
to shed some new light on what it means to be a number. 
A deeper objective is to show that symbolic arithmetic 
as we know it is not fundamental, but rather just one of 
many formal approaches to magnitude.

The exposition of James numbers includes both definition 
and transformation, as well as guidance about how to 
use the new ideas. Some of the new iconic concepts are 
not about numbers at all. They are spatial rather than 
numeric. These same concepts also permit us to describe 
and to simplify conventional logic, thus achieving a uni-
fication of number and logic, of algebra and proof.21 One 
small change in the rule that governs units can change 
arithmetic into logic. Visually:

   natural numbers  ( ) ( ) ≠ ( )

   elementary logic  ( ) ( ) = ( )

Let’s first look at James numbers dispassionately, as just 
another way to think about magnitude. We will establish 
a map between James forms and conventional numbers. 
Later we will ask: if both systems describe the same 
thing, why do they appear to express such different con-
cepts? How can the single idea of containment cover the 
diversity of ideas embodied in conventional arithmetic? 
More specifically, is the (bewildering to the uninitiated) 
array of number types in the sidebar at all reasonable?

6.6  Remarks
You may have noticed that Wikipedia articles and tech-
nical publications on mathematics are often impenetrable, 
both symbolically and conceptually. That’s reasonable, 
mathematics is after all a highly technical field of 
study. We would not benefit here, however, by a purely 
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mathematical approach since one of the primary design 
principles of boundary math is to help to make math more 
comprehensible to the non-professional. The strategy is to 
demonstrate formal techniques within a psychologically 
motivated and physically friendly system of communi-
cation. However, we are exploring a formal system, and 
formal systems inherently describe how a computer works 
rather than how an organic being thinks.

I’ve approached this description of James algebra as 
if we were learning a new language together. Well, a 
bit more than just a new language, also a new way to 
think about numbers, a new set of concepts. Comments 
in the text highlight significant differences between the 
boundary-based approach and the conventional symbolic 
approach to notation. A form looks like what it is intended 
to mean, although it does not necessarily look like how 
we might interpret it as a conventional number.

Boundary math does not seek novelty as a goal, it seeks 
simplicity. Most usually, the simplest path is both invisible 
and obvious. Mathematician Alexander Grothendieck:

The very notion of a scheme has a childlike simplic-
ity -- so simple, so humble in fact that no one before 
me had the audacity to take it seriously.22

The algebra of boundaries shares with Grothendieck the 
goal of simplicity, achieving it not by a higher level of 
abstraction of categories of mappings, but by embracing 
only one thing, the distinction.

Coming up, after introduction to the various James rep-
resentations and transformations in Chapters 7 and 8, 
we’ll look closely at how counting and arithmetic work 
in Chapter 9. We’ll see the form of addition and multipli-
cation as the interplay between two types of boundaries, 
( ) and [ ]. And we’ll look at the basic structural ideas 
underneath the natural numbers. 
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In Chapter 10, we’ll take the next big step to introduce 
the generalized inverse and a third type of boundary, < >. 
Angle boundaries come with a third axiom, so we end 
up with one axiom that defines each type of boundary, 
although ( ) and [ ] are co-defined. With James arith-
metic in hand, finally in Chapter 11 we will be able look 
at the entire range of conventional numbers.

We’ll generalize the developed tools to include rational 
expressions and other number types. Then we’ll move 
arithmetic into the higher dimensions of spatial forms. 
Toward the end of the volume, we’ll take a quick look at 
several other boundary arithmetics.

The [ ] unit in combination with angle-brackets creates a 
cacophony of non-numeric structures including the exotic 
and indeterminate expressions of conventional math 
such as negative infinity, infinitesimal, divide-by-zero, 
square-root-of-negative-one and logarithm-of-nega-
tive-one. Volume III retreats to the uninterpreted James 
arithmetic to examine the forms that correspond to these 
exotic expressions, viewing the development of theorems 
as design choices that come with both strong and weak 
points. This quasi-mathematical approach is thus a hybrid 
of rigor and realism. Volume III also focuses on one par-
ticular form, [<( )>], with very unusual properties.

Volume II and Volume III each contain a significant sur-
prise. In Volume III it is a newly resurrected imaginary 
unit, one that is more fundamental than √–1. In Volume 
II it is the disclosure that the James angle-bracket is 
only a convenient shorthand abbreviation that allows us to 
contrast negative and positive and thus remain in familiar 
cognitive territory where negative numbers are taken to 
exist. The numeric inverses too are configurations of only 
round- and square-brackets. In Volume II we’ll see that 
James algebra has only two independent boundaries that 
are bonded together by one void-based axiom and one 
rearrangement axiom.
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Endnotes
1. opening quote: B. Mazur (2003) Imagining Numbers p.163. Mazur 
continues on p.166: “It is also easy to underestimate the difficulties of com-
prehension that any change of notation presents.”

2. by putting them together into the same container: Like unit-ensembles, 
depth-value notation is available to simplify large collections of James units. 
In Chapter 11 we will see depth-value notation arise naturally as a James 
form.

3. out of the containing must likewise be out of the contained: L. Euler 
(1802) Letter CIV Different Forms of Syllogisms, (2/21/1761), H. Hunter 
(trans.) Letters of Euler  p.406.

4. Euclid’s geometry as the sacrosanct definition of mathematical rigor: 
Euclid’s Elements (circa 300 BCE) is a collection of mathematical proofs 
that was the second most published book (behind The Bible) in Western 
civilization for over 2000 years. To be a mathematician up until about 1850 
was to memorize Euclid’s Elements.

5. to be formalized in symbols arranged in sentences and equations: H. 
Simon, forward to B. Chandrasekaran, J. Glasgow, and N. Narayanan, 
(eds.) (1995) Diagrammatic Reasoning p.xi.

6. while the sentential representation does not: J. Larkin & H. Simon 
(1987) Why a diagram is (sometimes) worth ten thousand words. In 
Chandrasekaran et al, p.696. 

7. in all schools of philosophy as to the nature of relations: B. Russell 
(1923) Vagueness. Australasian Journal of Philosophy and Psychology (1) p.84–92.

8. even the most trivial consequence needs to be inferred explicitly: J. 
Barwise & J. Etchemendy (1996) Visual information and valid reasoning. 
In G. Allwein & J. Barwise (eds.) Logical Reasoning with Diagrams p.23.

9. a potentially confusing distortion of the image of a container: The 
overwhelming majority of published analyses of containment address string-
based concepts dominated by the right-half (called open) and the left-half 
(called close) of a fractured container. Algebraic representation is built upon 
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a stream of characters, whereas geometric representation occupies space. 
Algebraic geometry has all but banished geometric form from mathematics.

10. a good notation sets it free to concentrate on more advanced problems: 
A. Whitehead (1958) An Introduction to Mathematics p.39.

11. the interpretation of James forms in Figure 6-1: Multiplication-
as-substitution, characteristic of unit-ensembles, will not be used in the 
following chapters.

12. many transformations can occur concurrently, all at the same time: 
Chapters 4 and 13 include several examples. 

13. the conceptual fantasy of Platonic reality associated with mathemat-
ics: L. Bunt, P. Jones & J. Bedient (1976) The Historical Roots of Elementary 
Mathematics  p.122:

Most mathematicians accept the modern philosophical ideas that their 
axioms are logically arbitrary and that their theorems are about mental 
concepts. These mental concepts cannot be actually observed in the 
physical world. This view of the nature of mathematics can be traced 
back to the Greek philosopher Plato.

14. words, insofar as they are adequate, should represent images accu-
rately: Leibniz to Tschirnhaus, end of 1679 (Math., IV, 481; Brief., I, 405), 
as quoted in L. Couturant The Logic of Leibniz, Ch. 4 footnote 93. 

15. differ depending upon its intended interpretation: Treating the same 
symbolic expression in different ways depending upon its external context (i.e. 
its interpretation) can potentially invalidate the use of substitution, equality 
and identity, making the teaching of mathematics problematic. Symbolic 
expressions are treated as both clearly defined and ambiguous at the same 
time. An example of a context dependent system is written language. Both 
symbolic math and written text are languages. However in the prior sentence 
what we take as the meaning of the word “language” is determined by its 
applied mathematical or linguistic context. See E. Gray & D. Tall (1994)  
Duality, ambiguity and flexibility: A proceptual view of simple arithmetic.  
Journal for Research in Mathematics Education 26(2) p.115–141. Online 9/16 at 
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1991h-gray-procept-pme.pdf
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In a delightful and often quoted address to mathematics educators, Vladimir 
Arnold emphasizes that axioms are simply properties of transformations. 
This is quite similar to the approach taken here, that the pattern axioms 
identified in Chapter 5 are mechanisms that permit us to identify the absence 
of difference, i.e. the lack of a distinction. 

V. Arnold (1998) On teaching mathematics. A. Goryunov (trans.) Russian 
Math. Surveys 53(1), p.229–236. Online 10/16 at http://pauli.uni-muenster.de/~-
munsteg/arnold.html and http://www.math.fsu.edu/~wxm/Arnold.htm Also available 
at several other academic sites.

16. share these features with the other boundary systems: Chapter 14 
includes some of these alternative boundary systems. Unit-ensembles, spatial 
algebra and boundary logic are all described at iconicmath.com.

17. void-equivalent forms are both blind to sign and blind to multiplicity: 
Void, of course, has no properties including the absence of both polarity and 
replication. A void-equivalent form does have a typographic presence, how-
ever it is a technical error to think that a void-equivalent form is a specific 
form. Presence is essentially arbitrary and refers to any void-equivalent form.  
Hybrid forms such as ±([ ]) and 2 x ([ ]) tempt us to attribute sign and 
multiplicity to nothing at all.

18. sequential concepts that are not relevant to a spatial, parallel form of 
arithmetic: Peirce appears to be the first logician/mathematician to suggest 
that commutativity and associativity are secondary rather than axiomatic 
concepts. 

(4.374) Operations of commutation, like xy therefore yx, may be 
dispensed with by not recognizing any order of arrangement as signif-
icant. Associative transformations, like (xy)z therefore x(yz), which 
is a species of commutation, will be dispensed with in the same way; 
that is, by recognizing an equiparent as what it is, a symbol of an 
unordered set.

C.S. Peirce (1931-58) Collected Papers of Charles Sanders Peirce. Hartshorne, 
Weiss & Burks (eds.).

19. only inverse and distribution are fundamental: Chapter 34 shows that 
even the concept of inverse is derivative. Network numbers in Chapter 4 and 
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the James Arrangement axiom in Chapter 8 show that algebraic distribution 
is a special instance of a broader concept.

20. Similar to Conway numbers: J. Conway (1976) On Numbers and Games.

21. achieving a unification of number and logic, of algebra and proof: 
This unification has been a fundamental goal of work in boundary math 
since Spencer Brown. 

22. no one before me had the audacity to take it seriously: A. Grothendieck, 
quoted in R. Hersh and V. John-Steiner (2011) Loving + Hating Mathematics 
p.116.
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  Chapter 15 

In the brain there is no principled distinction 
between hardware and software or, more precisely, 

between symbols and nonsymbols.1 
— Francisco Varela (1992)

Next

  Chapter 15 

Our exploration has been conducted on an unlevel 
playing field. We have been using symbols to raise 

awareness of the postsymbolic nature of thought, and we 
have undertaken the exploration within a most unfriendly 
territory, that of symbolic arithmetic. An implicit expec-
tation has been that the reader is willing to explore iconic 
form while also considering that the thoughts engendered 
might be free of symbolic reference. Thought without 
words, experience without chatter? Distinction, that stuff 
of minds, requires difference, not reference.

15.1  Choice
How we think about mathematical concepts is influenced 
by how those concepts are presented and represented. 
Syntax and semantics, representation and meaning, 
are tightly connected. In general, how we record and 
manipulate numbers is a matter of convenience, but the 
convenience of the learner may have been forgotten. For 
learning mathematics — and for using mathematics — it 
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is more convenient to call upon sensory interaction and 
natural behavior than it is to manipulate symbols. 

A purpose of this volume is to provide evidence that our 
cultural and academic commitment to symbol process-
ing is a design choice and not an inevitability. We have 
explored two different formal models of arithmetic that 
are iconic rather than symbolic. Well, we have actually 
brushed the surface. Under each iconic structure there 
lies a deep well of potential innovation and opportunity 
waiting for an intrepid explorer whose appetite may have 
been whetted by the suggestion that numbers are far 
more than numerals and symbolic transformation rules. 
Numbers are contextual relations.

A premiere design concern is comprehension by non-pro-
fessionals, particularly students. If we did not have to 
conform to prior instruction, what would be the most 
desirable way to help students learn how arithmetic 
works? Just as important as student learning is an 
overarching question. To what extent have the recent 
technological and electronics revolutions changed our 
understanding from a century ago of what arithmetic 
is? For a society that inundates itself with high density 
visual information at every waking moment, 

It is no longer reasonable to claim that 
cognitive skill lies in typographic symbols. 

Underlying our mutual exploration is the overt obser-
vation that arithmetic is far broader, conceptually and 
experientially, than what is taught in schools and, indeed, 
what is thought throughout an academic culture focused 
on symbolic markings. If indeed math is important to 
learn, for rigor and for clarity, then surely we must ques-
tion which type of math is important for organic beings. 
And which dialects are appropriate for the 3D digital 
age? Does symbolic rigor mean preparation for the future, 
or is it perhaps a history lesson? 
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Human Nature
A more radical suggestion is that our twentieth century 
excursion into symbolic mathematics has been a tempo-
rary transition at best and a dimensionally degenerate 
delusion at worst. Each of us is born with evolutionary 
perspective and with organic knowledge of what might 
be called humane math. Neuroscientist Dehaene is spe-
cifically critical of formalist definitions.

Ironically, any 5-year-old has an intimate under-
standing of those very numbers that the brightest 
logicians struggle to define. No need for a formal 
definition. We know intuitively what integers are. 
Among the infinite number of models that satisfy 
Peano’s axioms, we can immediately distinguish 
genuine integers from other meaningless and arti-
ficial fantasies.  Hence our brain does not rely on 
axioms.2

Mathematics does not necessarily describe nature, it 
describes our human nature to occlude, to abstract and 
to simplify. Math is the tool that our culture uses to keep 
Reality from being overwhelming. Mathematician and 
historian Morris Kline:

Mathematics is not something independent of and 
applied to phenomena taking place in an external 
world but rather an element in our way of conceiving 
the phenomena. The natural world is not objectively 
given to us. It is man’s interpretation or construction  
based on his sensations, and mathematics is a major 
instrument for organizing the sensations.3

There are many thoughts, many sensory modes and many 
mathematics. The question is not which is right, or even 
which is better. The question is how do we wish to view 
ourselves?
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15.2  A Hidden Motive
There has been, all along, a hidden agenda, originally 
initiated by Spencer Brown. The idea is to construct the 
foundations of logic, numerics and sets, basically all of 
finite mathematics, from the same boundary concepts and 
forms. Spencer Brown’s Laws of Form for iconic logic are

Crossing
The value of a crossing made again 

is not the value of the crossing.

Calling
The value of a call made again is the value of the call.

Thomas McFarlane observes fairly that James algebra 
lacks a clear connection to Spencer Brown’s Laws of Form. 

The transformative rules and various types of bound-
aries are introduced ad hoc without providing any 
intuitive basis for them. What is the basis for the 
adoption of three different boundaries? Are there 
more fundamental justifications for the axioms gov-
erning the transformation of expressions? Is there a 
deeper connection with Spencer-Brown’s arithmetic?4

McFarlane brings to attention that there are both math-
ematical and philosophical motivations in the study of 
distinction and in Laws of Form. In Distinction and the 
Foundation of Arithmetic he derives the James axioms from 
intuitive first principles. McFarlane’s argument is philo-
sophical whereas the presentation herein is structural.  It 
is this structural mapping that awaits a deeper study.

Arithmetic and Logic
Each version of arithmetic in this volume has remained 
as close as possible to Spencer Brown’s formulation of 
logic, pivoting on a single modification. In Laws of Form 
Spencer Brown constructs elementary logic from two 

crossing
    〈〈 〉〉 =  

calling
   〈 〉〈 〉 = 〈 〉

accumulating
   ( )( ) ≠ ( )
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axioms. The Law of Calling generates logical form by sup-
pressing accumulation, while in the arithmetic of numbers 
Accumulation, the denial of Calling, generates numeric 
form. Calling allows repetition that does not change value, 
while Accumulation identifies a specific type of repetition, 
the repetition of replica units, that in effect defines value. 
The Law of Crossing holds for both arithmetic and logic. 
Crossing defines how value is changed rather than how it 
is created. Value changes when we cross a boundary.

Figure 15-1 provides a brief comparison. The logical bound-
ary is rendered in the figure as 〈 〉. The small differences in 
the structure of boundary arithmetic and boundary logic 
provide substantive clues about the foundational structure 

 ARITHMETIC                     LOGIC

accumulation/unification
   ( )( ) ≠ ( )

   [ ][ ] = [ ]        〈 〉〈 〉 = 〈 〉

inversion/involution
 ([A]) = [(A)] = A
         <<A>> = A       〈〈A〉〉 = A

arrangement
  (A [B C]) = (A [B]) (A [C])     〈A 〈B C〉〉 = 〈A 〈B〉〉 〈A 〈C〉〉

dominion
  (A [ ]) = void       〈A 〈 〉〉 = void 

reflection
   <A <A>> = void       〈A 〈A〉〉 = void 

pervasion
              A 〈A B〉  = A 〈B〉

Figure 15-1:  Boundary arithmetic and boundary logic
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of finite mathematics. Since boundaries represent cognitive 
distinctions, the difference in the structure of logic and 
numeric form specifically identifies the difference between 
thinking logically and thinking numerically.

Construction
Arithmetic is constructed from logic by these modifications. 

Units exist.
  ( ) ≠      [ ] ≠      〈 〉 ≠

Arithmetic consists of two types of units. One accumu-
lates and one is the same as a logic unit. Logical Truth is 
a type of numeric infinity.

  ( )( ) ≠ ( )    [ ][ ] = [ ]    〈 〉〈 〉 = 〈 〉
Inversion prohibits mutual containment of the two types 
of numeric unit, as it does for the logic unit.

    ([ ]) = [( )] =      〈〈 〉〉 =

Nested pairs do not condense, just like the logic unit.

  (( )) ≠ ( )    [[ ]] undefined     〈〈 〉〉 ≠ 〈 〉 

Arrangement is the same for both numeric inversion 
frames and the logic boundary.

     (A [B C]) = (A [B]) (A [C])

	 	 	 〈A 〈 B C〉〉 = 〈A 〈B〉〉  〈A 〈C〉〉
Dominion defines a hierarchy of existence.

     ( )[ ] = [ ]

All of this mechanism is designed to maintain accumu-
lation of arithmetic units only, and to assure otherwise 
that  arithmetic units do not get replicated during trans-
formation and rearrangement. Arithmetic units cannot 
cross a boundary without changing the cardinality of 
the boundary. Within this constraint arithmetic units are 
indistinguishable from logic units. When the angle bracket 
is introduced, it too is equivalent to the logic boundary.
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The other substantive difference between arithmetic 
and logic is that the logic boundary is semipermeable. 
Pervasion asserts that replicas of outside forms can cross 
a logic boundary to the inside, something that is forbid-
den for any type of numeric boundary. Semipermeability 
gives limited permission to replicate without changing 
cardinality. Not surprising since logic does not support 
accumulation of cardinality.5

15.3  It’s Not Easy
Reflection upon the history of the development of math-
ematical concepts, as John Derbyshire writes in his 
history of algebra, will “make us realize how deeply 
unnatural mathematical thinking is.” 6 Not only do we 
have no evolutionary adaptation or propensity for purely 
abstract thinking, also the greatest intellects of the last 
two millennia have struggled mightily with what we 
believe today should be common mathematical knowl-
edge. Here’s Morris Kline again:

In retrospect, this glorification of mathematical 
reasoning seems incredible. To be sure, tatters of 
reasoning were employed. But especially in the 18th 
century when heated debates about the meaning and 
properties of complex numbers, logarithms of neg-
ative and complex numbers, the foundations of the 
calculus, the summation of series, and other issues 
we have not described filled the literature, the des-
ignation Age of Confusion seems more appropriate.7

Symbolic arithmetic is not easy, it has taken centuries for 
humanity to develop it. John Derbyshire:

The extreme slowness of progress in putting 
together a symbolic algebra testifies to the very high 
level at which this subject dwells. The wonder ... is 
not that it took us so long to learn how to do this 
stuff; the wonder is that we can do it at all.8

pervasion
A 〈A B〉 = A 〈B〉
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Math Education
The point of demarcation is that students in grade school 
and in high school and in college do not need to under-
stand arithmetic from the perspective of a foundational 
mathematician, of which there are only a few hundred 
world-wide. That would be like insisting that Xtreme 
athletes import their training regimes into grade school 
playgrounds, and that children in science classes emu-
late the life-long research strategies of Nobel laureates. 
What is misunderstood by mathematics educators is that 
expertise requires both a vast array of baseline knowl-
edge and extensive training in applying that knowledge. 
Children, and adults too, are not mathematical experts 
but the notations, computational strategies and modes of 
thought incorporated into high school math are intended 
to emulate those of mathematical experts.

The problem is that professional mathematical tools have 
leaked down into elementary math education as if they 
were arithmetic itself. Prior to anchoring our concept of 
number to sets and to logical theory about a century ago, 
there was another much simpler arithmetic based on the 
intuitive Additive Principle. It is this organic understand-
ing of numbers that should be taught in schools. Logic 
and sets do not have an exclusive right to claim to be the 
only formal foundation for numeric arithmetic.  

There is yet another perspective: school math classes do 
not teach math, or at most teach only the tiniest portion 
of actual mathematics. Mathematician Ian Stewart:

What mathematics is, and how useful it is, are 
widely misunderstood.  It is not solely about 
numbers, ‘doing sums’ as we were taught in school 
— that’s arithmetic. Even when you add in algebra, 
trigonometry, geometry and various more modern 
topics such as matrices, what we learn in school is 
a tiny, limited part of a vast enterprise. To call it 
one-tenth of one per cent would be generous.9
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What is taught is not math but rather computer science, 
the domain that studies and characterizes the behavior 
of algorithms and automatons. The rigidly structured 
curriculum materials and the standardized tests of algo-
rithmic skill and technocultural fact is what computer 
science calls software programming. Math education 
attempts to download a silicon programming language 
into organic beings while completely ignoring teaching 
the skills of symbolic programming.

For an understanding of mathematics, for any hope that 
future students will be receptive to mathematics, for the 
possibility of teaching mathematics well, indeed for the 
possibility of teaching mathematics at all, we need to 
return to the simple conceptual foundation of mathemat-
ics as direct physical experience.

15.4  Summary
Figure 15-2 collects the explicit principles of boundary  
arithmetic that are scattered throughout the chapters.  
These principles provide structure for a conceptual map 
of learning and teaching elementary arithmetic. The prin-
ciples are stated succinctly so that they may stand alone 
as bumper-stickers. Some of the phraseology is new, in 
order to connect the concepts to the central organizing 
idea of making a distinction.

What can be said in summary? Sums are fusions. What 
is the fusion of the content of this volume? Fusions are 
wholes. We have drawn a boundary, made a single dis-
tinction. Outside there is experience; inside, thought.

You can tell if you understand a mathematics 
by changes in your vision.

Inside, where there is nothing, is measured by change on 
the outside. Outside is identical to the distinctions that 
we elect to construct. 
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From Here
There are two volumes on iconic arithmetic to follow. In 
Volume II we address just what formalism is, as a math-
ematical philosophy and as a computational paradigm. 
We’ll go back to visit the original models of arithmetic 
developed by Frege, Peano, Robinson and others to com-
pare the formal structure of symbolic expressions and 
iconic form. We have glossed lightly over the concept 
of equality, so we will mold it into void-equivalence. 
Similarly we have yet to integrate parallelism into our 

Figure 15-2:  The principles of boundary arithmetic

             VOID                                          page
Void    Void has no properties.             15
Existence   Something is not nothing.          168

MEANING

Distinction  Difference is an idea.              15
Calling    Repetition does not make a difference.        372
Crossing   Crossing a boundary makes a difference.        372
Axiomatic   If it is not explicitly allowed, it is forbidden.       140
Communality  When it is shared by all content, it is context.       36
Semantics   A pointer is not what is pointed at.         213
Participation  Meaning depends on how we look.           13
Void-equivalent  Void-equivalent structure cannot make 
       a difference.           151

ARITHMETIC

Accumulation  Parts accumulate rather than condense.        171
Hume’s   Equality is one-to-one correspondence.           62
Additive   A sum looks like its parts.              3
Multiplicative  Each part of one touches each part of the other.       3
Arrangement  Arrangement is the sole source of complexity.   197
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formal model. Then it will be time to address symbolic 
and iconic metamathematics. 

We’ll explore pure boundary arithmetic, its internal 
structure and formal consequences without regard to 
interpretation. Just how can arithmetic fit neatly into 
one binary relation?  What are the structural properties 
of containment? Just what have we taken on in claiming 
that arithmetic is about a single physical relationship? 

We will be able to dismiss the angle-bracket entirely, 
reducing James algebra to two boundary types without 
loosing the integration of operations and their inverses. 
This of course raises further questions about group the-
ory, since inverses too will be removed from the current 
theory of arithmetic, reduced to a notational abbreviation. 
Only Distribution remains, to allow smooth transition 
between addition and multiplication (and incidentally 
to permit the generation of mathematical complexity).

Volume II then feels quite different, with deeper, more 
challenging questions at the foundations of the current 
philosophies of mathematics. This is a necessary volume 
to address the many technical details about the structures, 
assumptions and thought processes that we now expect 
grade school teachers and students to grasp intuitively.

In Volume III we’ll tackle the neglected topic of the empty 
square-bracket and its possible interpretation as an infin-
ity. What are the consequences of mixing numeric and 
non-numeric units? How does James algebra handle divi-
sion-by-zero and indeterminate forms and exotic bases? 
These noxious concepts are in the interpretation, but what 
are they in the form? We will be able to organize the indeter-
minate forms such as ∞ – ∞ and ∞/0 into a single coherent 
pattern. The Mother of all imaginaries, –1, is implicated 
with every strangeness that occurs in arithmetic.
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Volume III returns to pure exploration of form by 
examining J, the logarithm of –1, as the foundation of 
imaginary numbers from which our current compound 
imaginary i can be derived. Just what does the imagi-
nary numeric realm mean, and what are its fundamental 
structures? We’ll take a close historical look at Euler and 
Leibniz and Bernoulli as they invent complex numbers 
yet fail to converge on the meaning of J. We will see the 
features of the imaginary domain arise out of a simpler 
foundation guided by patterns of containment. 

We’ll also develop the James of calculus derivatives, 
revisit the oscillation of logarithmic and exponential lev-
els of nesting in the context of imaginary forms, and take 
a closer look at the concept of mathematical morphism. 
And then we’ll unify π, trigonometry, cyclic behavior, 
hyperbolic functions and complex logarithms naturally 
within iconic form.

Phew! And hopefully a solid foundation for beginning 
to understand, in potential Volumes IV and V, Spencer 
Brown’s reconceptualization of logical thought. Boundary 
logic itself provides a far more revolutionary reconstruc-
tion of the nature of rationality than does our current 
exploration of boundary arithmetic. Logic is unary not 
dualistic; FALSE is a void-equivalent concept that can be 
completely disregarded and discarded. Deduction means 
to identify and delete void-equivalent forms. The path to 
critical thinking (as well as to new computational archi-
tectures) is through removal rather than accumulation of 
structure. The basis of rationality is emptiness.

15.5  Remarks
Spencer Brown’s book Laws of Form is seminal, but 
in the fifty years since it was written our experience 
with boundary logic has grown significantly. There is 
an extensive collection of papers describing boundary 
logic at www.iconicmath/logic/boundary/. 
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Endnotes
1. opening quote: F. Varela (1992) Ethical Know-How p.54.

2. the brain does not rely in axioms: S. Dehaene (2011) The Number Sense: 
How the mind creates mathematics  p.223. 

3. mathematics is a major instrument for organizing the sensations: M. 
Kline (1980) Mathematics The Loss of Certainty p.341. 

4. Is there a deeper connection with Spencer-Brown’s arithmetic?: T. 
McFarlane (2007) Distinction and the Foundations of Arithmetic. Online 6/16 
at http://www.integralscience.org/tom/

5. logic does not support accumulation of cardinality: For an extremely 
concise summary of the growth of arithmetic and logic from nothing at all, 
see W. Bricken (2006) The Mathematics of Boundaries:  A beginning.  In 
D. Barker-Plummer et al (eds.)  Diagrams 2006, LNAI 4045  p.70-72.

6. how deeply unnatural mathematical thinking is: J. Derbyshire (2006) 
Unknown Quantity  p.40.

7. the designation Age of Confusion seems more appropriate: Kline, p.169.

8. the wonder is that we can do it at all: Derbyshire, p.51.

9. to call it one-tenth of one per cent would be generous: I. Stewart (2011) 
Mathematics of Life  p.8.

This volume is if anything pragmatic. And yet some phi-
losophy shows through in the form of the metaphysics 
of void. There are two voids. One we can talk about; that 
one is indicated by its boundary. That void is coupled 
to distinction as the foundation of unity. The other void 
is destroyed upon mention. The unmentionable is the 
metaphysical motivation of this volume. The concept of 
number is already so far removed from its origin that it 
is essential to regress backwards, from Two to One to 
Nothing to Silence, in order to find number, unity and 
absence.
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 iconic     1-3, 6, 8, 17
  calculi    10-11
  concepts    34, 153-154
  math    26, 38
  principles    122, 397 15-2
 include the reader  13, 180, 309-310
 interaction    211-212, 218
  absence    138, 172
  cerebral    144
  concrete    21-22
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          212, 225, 231
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  grouping    362 14-9, 363
  merging    362 14-9, 363
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  substitution   342, 362 14-9, 
          363-364
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Iconic arithmetic is physical, sensual, natural.
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embodied, multidimensional, concurrent, inclusive.
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