
Distinction is Sufficient
William Bricken1

March 2017

In his seminal book Laws of Form, George Spencer Brown laid the foundations of iconic
mathematics. By recording mathematical concepts in spatial forms rather than in symbolic strings,
he demonstrated that logic rests elegantly upon one idea, distinction, the cognitive construction of
difference. This article describes in detail how symbolic logic is permeated with irrelevant
structure such as ordering, grouping, sequential steps, counting and duality. Iconic rationality
rests only upon the deletion of irrelevant differences.

Contents
1. Introduction

1.1 Exploration
Item of Faith

1.2 Diversity of Languages
2. What is Laws of Form?

Principle of Void
Principle of Existence
Principle of Identity
Principle of Containment
Principle of Void-Equivalence

3. Propositional Logic
4. Annotated Parens

4.1 The Annotated Arithmetic of Form
4.2 Incidental Structure

5. Restricted Predicate Calculus
5.1 Domain
5.2 Forms
5.3 Ordered Pairs
5.4 The Ordered Pair Arithmetic of Form
5.5 The Contains Relation
5.6 Quantification
5.7 Properties of Containment

Irreflexive and Asymmetric
Physicality
Transitivity and Intransitivity

6. PUT Functions
6.1 PUT Notation
6.2 Construction of Functional Forms
6.3 Properties of the PUT Function
6.4 The Functional Arithmetic of Form

�1

7. Distinction Networks
7.1 Structure
7.2 Flexibility
7.3 The Asynchronous Arithmetic of Form

8. Computation
8.1 Pattern-Matching
8.2 Iconic and Symbolic Calculi

Axioms of the Arithmetic of Distinction
Axioms of the Algebra
Computational Axioms

9. Single Variable Calculus
10. Innovation
Appendix: Proof of Modus Ponens

Parens
Ordered Pairs
PUT Functions
Distinction Networks

Endnotes
References

Figures
Section 1 Figure 1: Eight Notations for Containment

Figure 2: Relationship between Languages
Section 5 Figure 3: Crossing the Iconic/Symbolic Chasm

Figure 4: Symbolic Constraints that Define Containment
Section 6 Figure 5: Functional Notations for Constructing Parens Forms

Figure 6: LoF Arithmetic as PUT Functions
Section 7 Figure 7: Iconic Constraints that Define Containment

Figure 8: Asynchronous Crossing and Calling
Section 8 Figure 9: The Iconic Axioms of LoF

Crossing
Calling
Position
Transposition
Dominion
Involution
Pervasion

Section 9 Figure 10: Axioms of the Single Variable Algebra
Figure 11: Notations for the Computational Axioms

Appendix Figure 12: The ☞ Map from Logic to Parens

�2

1. Introduction
Spencer Brown’s seminal work Laws of Form (LoF) presents an iconic algebra that can
incidentally be interpreted as propositional logic. LoF launches us into a postsymbolic territory
where spatial forms condense symbolic complexity, where there is no syntax/semantics barrier,
where objects are united with processes, where absence is a primary conceptual tool, and where
the viewing perspective of the reader is directly implicated within the form. When applied to
logic, Spencer Brown’s iconic arithmetic challenges a foundational assumption of Western
thought, that rationality requires dualism.

The purpose of this article is to demonstrate in detail that LoF is not isomorphic to symbolic logic.
It is formally and conceptually much simpler. Said another way, LoF shows that common logic is
baroque, burdened by too many structural restrictions, too limited stepwise linearity, too much
computational mechanism, and too narrow a perspective on cognition. Symbolic logic informs
rational thought, but only at the cost of the structural maintenance of verbal and textual strings of
symbols. LoF foreshadows an entirely new technique for understanding the structure of formal
proof and rational thought. We need only the concept of distinction, which can be expressed by
containment forms that implement a partial ordering. Deduction does not necessarily require the
duality of truth and its negation, it does not require the concept of negation at all. Semantic
existence is sufficient to identify forms that are TRUE, those that are FALSE can be relegated to
nonexistence.

By comparing seven different conceptual and notational formal systems to LoF, this article traces
in detail how one accustomed to symbolic thinking might misunderstand Spencer Brown’s iconic
forms. Iconic notation provides structural room for both breadth and depth of expression, leading
to an economy of concepts. LoF itself incorporates only one relation (containment), fully
expressing Boolean logic within an algebra consisting of one constant, one variable and one
binary relation. Transcribing the iconic notation of LoF into symbolic string notation converts the
fundamental concept of containment into careful positioning of a sequence of replicated labels. A
common confusion is the belief that free replication of symbols imposes no conceptual costs. The
ordering and grouping required to disambiguate strings of tokens, for example, are properties of
sequences of operations defined by the distributive axioms of logic and arithmetic. They can also
can be understood as incidental to meaning, a property of the system of representation rather than
of the things represented. Symbolic notation imposes sequence, suppressing the inherent
parallelism of containment structures. Given sufficient processors we can access any number of
containers all at the same time, but we cannot read a page of words all at the same time. Text
incorporates the background white space of the page as a container of characters and words,
however the space of the page provides only maintenance of textual sequence and is bejeweled
with implicit conventions that allow us to organize strings of characters within an empty space.
Icons in contrast are images that use space to convey meaning. Whereas symbolic logic is the
lyrics of a song, iconic logic is the melody.

Unfortunately members of the formal community who have examined LoF are split into at least
two factions. The antiquarian faction insists that LoF is just another syntax for common logic,
that it is a unique notation for the same ideas that have been established over two millennia. The
antiquarians endorse an understandably conservative perspective, that the logic that we already

�3

know is the ground beneath Spencer Brown’s innovation. The representational slight-of-hand that
changes LoF into classical logic is to add superfluous concept and structure that is not in Laws of
Form. The postsymbolist faction sees distinction not only as the essence of logic, but also as the
fundament from which logic and perception blossom. Distinction identifies a difference between
content and context. Boolean algebra rests upon the two grounds of 0 and 1 (alternatively TRUE
and FALSE); in LoF there is only One. Zero, nothing, does not exist. There is only one difference
between 0 and 1, that of change. Difference alone, as described by Spencer Brown and by Bateson,
is a sufficient conceptual basis for rational thought.

Sections 1 and 2 identify the essential features of LoF that make it iconic rather than symbolic.
Section 3 examines how these features redefine propositional logic, and then in Section 4 we
construct an annotated notation that allows the chasm between iconic and symbolic form to be
traversed. Section 5 discusses how the methods of predicate calculus bridge the chasm by the
construction of incidental relational structure. These same mechanisms are presented in Section 6,
embodied as conventional functions. Section 7 then examines an iconic version of LoF that
supports parallel, asynchronous transformation of form. In Section 8 we present the algebraic
axioms of LoF expressed in both iconic and symbolic formal structures, ending in Section 9 with
a single variable iconic calculus that makes it evident that LoF does not even include the concept
of a binary relation. There’s a brief summary in Section 10, followed by an Appendix that
compares examples of iconic and symbolic algebraic proof. The map from propositional logic to
LoF is Figure 12 in the Appendix.

1.1 Exploration
George Spencer Brown ignited pockets of excitement, work and reflection across the world. His
innovations in postsymbolic logic and distinction-based calculi have fueled a deeper
philosophical understanding of the structure of reality, an insightful investigation into the nature
of cognition, a clearer conceptualization of cybernetic formalism, and a broader perspective on
mathematical and computational processes. As is widely known, Spencer Brown also ignited
controversy, something that invariably accompanies innovation, especially in mathematics. The
most dominant technical debate is whether Laws of Form is simply another notation for
propositional logic, or whether LoF provides a completely different postsymbolic foundation for
formal thinking. Both perspectives are correct, however the latter subsumes the former.

I’ve spent over three decades implementing Spencer Brown’s concepts in symbolic software and
in silicon hardware. If LoF is isomorphic to some existing and well-known mathematical system,
then personally I’d find it to be not all that interesting. If LoF is a precursor to logic and to
rationality, then surely we should be able to learn something by applying this calculus to some of
the most complex applied logic problems known, the design and optimization of silicon circuitry
composed of millions of logic gates. This article is not about massive optimization problems, it is
about an ongoing attempt to find the bridge between LoF, conventional mathematics and the
computational techniques used in the design of both semiconductor networks and the
programming languages that instruct their behavior. The narrower goal is to specifically identify
the symbolic mechanisms required to express LoF, and then to ask which of those mechanisms are
inherent within LoF and which are essentially invasive species.

�4

LoF is iconic, its forms look like what they convey. Conventional math, until very recently, is
symbolic.2 Its expressions are formally disconnected from what they mean. What cognitive
limitations are imposed by the choice of a particular style of representation? What are the costs of
attempting to separate the content of a communication from the method of its transmission? Does
formulating our criteria for clarity, proof, and efficiency in terms of linear strings of symbols limit
our capabilities for understanding the concepts that these strings supposedly represent? Could it
be that what we consider to be rational and logical thought is burdened by approaches to
communication that are too narrow?

Mathematics is an essential human endeavor that is deeply rooted in human cognition. Evolution
of formal understanding is a natural process. Logic has evolved through the Aristotelian square of
opposition to syllogisms to Boolean algebra to Gentzen natural deduction to modern
computational approaches such as resolution, equational logic and category theory. Lakatos’
thesis is that mathematical concepts evolve through a negotiated process of exclusion,
reconceptualization, and generalization.3 Symbolic logic rests upon duality, excluding the
integrated unity of iconic distinction. Spencer Brown has provided a reconceptualization. Now is
the time to think more generally, in terms of unified systems rather than opposing factions, in terms
of webs of essential relations rather than discrete objects, in terms of ecological wholes rather
than deconstructed pieces, and in terms of difference rather than truth.

Item of Faith: LoF is both formally and conceptually simpler than elementary logic.

Formally simpler means that the language and the transformations of LoF map one-to-many onto
the language and the axioms of propositional calculus. LoF reduces both the conceptional and the
representational apparatus that supports our current foundation for formal thinking. We’ll show
that logic can be seen to consist of a single binary relation that does not require the infrastructure
of sets or predicate calculus. Logic itself is much simpler than how we use it. LoF can help us to
think logically without thinking symbolically. One key is to focus on the relation between objects
rather than on the objects themselves.

 BROADCAST INTIMATE

The object-oriented broadcast model of communication presupposes two disconnected objects
with a separate communication channel between them. The objects themselves embody
difference. The intimate boundary model presumes two territories delineated by a common
boundary that both separates and connects. Difference is embodied by the boundary. Eliminating
the broadcast communication channel leaves two isolated objects. Eliminating the intimately
shared boundary exposes a common unity.

�5

LoF is a candidate for the simplest elegant mathematical system. If that is the case (or anything
like the case), then we should be able to precisely trace a sequence of design decisions that
connect the conceptual structure of LoF to that of symbolic logic and numerics. A theme is that
the representation of formal thought is a design choice, one that strongly interacts with both
content and cognition. Reading the book is not isomorphic to seeing the movie. The idea is to look
for ways in which LoF simplifies and clarifies logic. Any structure that is not a straightforward
isomorphic map from one system to the other is itself a formal difference between the two
systems. We know the structure of both LoF and logic and we know the maps that connect the
two (see Figure 12 in the Appendix), so one would expect that the design differences to be
explored would be largely conceptual. There are indeed conceptual challenges, many arising from
a diversity of ways that scholars read and interpret Spencer Brown’s work. One conceptual
difficulty is the tendency to define LoF in terms of classical symbolic mathematics, thereby
obscuring its iconic form under a reading that imposes unnecessary restrictions.

There are also, however, many structural challenges. This is convenient since structural
differences are overt, observable, and manipulable. These differences too can lead to
interpretations that fail to acknowledge the conceptual and formal structure of LoF, that add non-
existent structural elements to assure conformity, and that define a particular theory of
representation as the only valid mode of communication. Because the symbolic approach is well-
developed, it has little flexibility in reaching toward postsymbolic techniques. In comparison,
restructuring iconic form to be symbolic is largely a matter of degradation, of obscuring the
essential features of iconic form until both the representation and the intention are no longer
visual or intuitive. Symbolic techniques support an ancient Greek belief that formal thinking is
entirely cognitive, that sensation has no place within the rigor of mathematics. Iconic techniques
support a postsymbolic perspective that cognition is embodied, that rigor arises from its biological
and physiological context. A screenplay is expanded into a movie by enriching its sensual
elements: sound, light, action. In reducing a movie to its readable text, sensuality reverts into the
imagination, an enrichment of a different kind but one that weakens rigor by removing the
validation of experience.

There is also a plethora of assumptions built into how we record formal systems on paper. These
create difficulties whenever they are held to be invariant. We will focus on several. Classical
mathematical perspective has embraced, for example, sequential processes at the cost of parallel
concurrent processes. It has consecrated structural rearrangement at the cost of the simpler
process of deletion. It has imbued the emptiness of the page we write upon with implicit structure
such as an infinity of points. And it supports a belief that representation (syntax) is independent
of meaning (semantics).

Software languages are a wonderful tool for locating design decisions within a structural system
of representation. A software implementation environment is necessary to manage the diversity of
exploration paths and for assuring the integrity of any bridges being built. Silicon computation
reminds us, with insistence, that any computational mathematics is reducible to a string of 0s and
1s, which in turn is reducible to timed electrical currents either present or absent in each wire of a
vast matrix of connected and buffered transistors. Computation protects us from imposing
esoteric conceptual and cultural overtones and assumptions upon structural transformation.
Conversely, structural necessity is an excellent mediator that helps to verify conceptual clarity. 

�6

1.2 Diversity of Languages
This article explores a diversity of representations for the contains relation, what Spencer Brown
identifies as the definition of distinction.

Distinction is perfect continence.4

We’ll compare seven different conceptual and representational systems to Spencer Brown’s Laws
of Form. Figure 1 identifies these languages and provides an example of the form of each. For the
representation of containers, I’ll be using (), called parens, rather than Spencer Brown’s ,
called cross, both for typographical convenience and for enhanced flexibility. And I’ll use

the finger of interpretation ☞
to indicate when we move from one conceptual system to another. The finger is more than a
syntactic map, it is an instruction to think differently.

 TYPE/NOTATION FORM EXAMPLE

 iconic
LoF cross b

parens notation (b) () (() (()))

 hybrid
annotated parens (b)a 〔 (ø)a ((ø)c ((ø)e)d)b 〕

 symbolic
propositional logic NOT b T or (T and F)

ordered pairs { (a,b) } {(U,a),(U,b),(a,ø),(b,c),
 (b,d),(c,ø),(d,e),(e,ø)}

contains relation ∀b∃a Sab SUa & SUb & Saø & Sbc
 & Sbd & Scø & Sde & Seø

PUT function Pba a[[c[[ed]b]]U]

 iconic
distinction network

Figure 1: Eight Notations for Containment

�7

e
dc

baa

b

To express containment in both iconic and symbolic languages, we will call upon these visually
different notations.

— Spencer Brown cross is the original iconic form of a distinction.
— Parens notation is a convenient typographical shorthand for two dimensional

enclosures. It represents arrangements of LoF crosses.
— Annotated parens notation adds labels as a bridge to a representation of

containment arrangements in predicate calculus.
— Propositional logic is an interpretation of parens forms.
— Sets of ordered pairs are derived directly from the annotated parens notation.
— The predicate calculus description consists of quantified conjunctions of relational

formulas. There is only one relation other than equality, the contains relation.

— The PUT function provides a functional representation of the contains relation.
— Distinction networks are an iconic notation that provides an alternative

visualization of both parens and relational notations. Dnets use a single binary
relation (contains) to connect nodes within a directed acyclic graph.

Figure 2 shows the relationships between the languages we will consider. The primary result of
this exploration is buried deep within the techniques used to specify compound containment
relations. Symbolic techniques for representing structures with both breadth and depth
necessarily introduce notational artifacts that convert iconic LoF into symbolic logic. These
incidental symbolic concepts include belief that absence must have a symbolic representation, that
depth and breadth can be notationally equivalent, that labels can be freely replicated, that axioms
for ordering and grouping are relevant, and that container boundaries must be impermeable.5

Figure 2: Relationship between Languages

�8

SYMBOLICICONIC

Spencer Brown cross

parens forms contains
relationsadd labels,

null token,
unwritten cross

distinction networks ordered pairsno labels, no null token,
nesting as links

HYBRID

annotated
parens flatten nesting,

thread labels

PUT functions

nest labels

equivalent

equivalent

equivalent

equivalent

2. What is Laws of Form?
A significant obstacle to this exploration is coming to an agreement upon what LoF actually
means, on how it is intended to work, and on what the computational concepts built into the
notation are. For example, LoF’s use of void as an unwritten state must be conceptual, because
physical computational devices and string-based software languages cannot use absence to
propagate state information. Computation cannot incorporate our thoughts or our intentions
unless they are explicit. The unwritten state is simply a crutch to reach out to classical two state
thinking. The deep innovation within LoF is one-value thinking, a unary logic.

Here are five fundamental mathematical and philosophical Principles embodied in Laws of Form
that we have implemented in computational systems. I’ll suggest that these ideas are consistent
with the LoF text, that they clarify what Spencer Brown was teaching us, and that they provide
guidance about the conceptual and cognitive structure of LoF itself. The goal is quite narrow: to
understand the explicit structural characteristics of Spencer Brown’s calculus when they are
expressed within the conceptual and notational structures of symbolic logic.

Principle of Void: Void has no properties.

This Principle is not explicit within LoF, perhaps due to Spencer Brown’s wisdom, since the
Principle itself might sound self-contradictory: no properties might be seen as a property. There
are two voids. One we destroy by mentioning it. The other one we can refer to indirectly as the
contents of an empty container. A bounded void is what remains after destroying the
unmentionable void. All properties are properties of the boundary, and not properties of the
contents, since there are no contents. By labelling and transforming only the containers of nothing,
we can avoid any attribution of properties to absence itself. This principle permeates every
implementation of LoF and is the fundamental difference between LoF and symbolic
mathematical systems.

Principle of Existence: Something is not nothing.

The initial distinction is to posit a difference within void. The first distinction cleaves an empty
space, converting nothing into something, destroying the emptiness to create a bounded void.

EXISTENCE ≠ ()

In Existence the void is not negated, rather it is framed. A form comes into existence by a change
in perspective. The change is to construct a boundary that draws attention. As Spencer Brown
points out, the marked frame is also a label, a signal, an indication, an intention, a value, and an
instruction. These concepts are at this point degenerate, different names for the same thing,
concepts that are being called into being prematurely.

The Principle of Existence is sufficient to allow us to define what is meant by distinction, from
both Spencer Brown’s and Bateson’s perspectives. A distinction-based perspective treats
difference as fundamental. Distinction is the cognitive act of constructing a difference where there is
none. A cognitive distinction can be represented by the difference between inside and outside of a
parens, or the difference between under and not-under a cross, or the difference between a

�9

written mark and reading that mark.6 The sides of a distinction define a choice of perspective.
Difference is the act of crossing that boundary. At this point difference is not directional since we
have yet to select which side of the distinction we are viewing from. Our choice of perspective
defines what we mean by “outside”. The characterization of a crossable boundary as a container
incorporates an ecological perspective. When we are inside, as contents, the outer container defines
our environment. As such it provides a comprehensive context and a limiting perspective. When
we are outside, the container object shares our context. However, to view an object within our
own context requires a further external environment, an outermost container for both our
viewpoint and the object we are viewing.

Existence asserts that a container (a frame) and void are different, that inside and outside are
different. The difference sign ≠ has both descriptive and constructive aspects. Statically the sign
asserts that a container can be read as an object, as a frame. Dynamically the ≠ sign asserts that
crossing a boundary changes what is visible. We can observe this change when crossing to the
inside, when the former container-as-object becomes our containing environment. And we can
observe the same change when crossing to the outside, when our surrounding environment
becomes a discrete object. The ≠ sign itself appears to combine two logical concepts, equality and
negation, however both of these concepts are derivative of what the ≠ sign means here. Classical
mathematics focusses on identifying what is the same: negation of sameness is difference. Here
difference is fundamental, indicating that outside differs experientially from inside. The iconic
form of existence illustrates its meaning.

We can move closer to standard symbolic notation by introducing Spencer Brown’s concept of an
unwritten cross.7 “An unwritten cross is common to every expression in the calculus of
indications and so need not be written.”8 In order to locate LoF within symbolic systems,
however, we will need to write what might be unwritten. Writing the unwritten cross introduces
the idea of types of boundaries, some of which have the written property and some which do not.
We’ll use the expedient of making all unwritten boundaries explicit and differentiating them by a
different boundary shape, the shell bracket〔 〕. The unwritten cross serves only as an
outermost container. It can be understood as belonging to the metalanguage, without semantic
intent. We can now record Existence entirely from the outside perspective.

EXISTENCE 〔 〕≠〔 () 〕

Comparing the two representations of Existence, we can see why Spencer Brown considered the
unwritten cross to be unnecessary; it serves only to anchor our reading perspective. The
unwritten container is not a semantic parens, it is a meaningless and therefore deletable
distinction. We’ll identify the unwritten container in symbolic notation by the token U.

Principle of Identity: A distinction is itself.

Identity defines the equal sign, and is an integral assumption of algebraic systems.

IDENTITY () = ()

�10

What concepts and structures do we introduce with the equal sign? Why does it have two sides,
and why does each side house identical forms? Where do the replicas come from? These
structural questions do not require an excursion into what equivalence means. From living in
physical reality we already know that equality must be an imaginary idea, constrained to
cognition rather than to perception. Equality is a transparent container, one that does not indicate
a difference. The two replicas on each side are the same form; identity helps us to believe that we
can construct replicas without difference. Identity thus supports the illusion of a difference that
does not make a difference. Making a distinction in void creates an inequality, a change from
nothing to something. Failing to make a distinction creates an equality. The initial equality is our
inability to be able to distinguish difference in absence.

NON-EXISTENCE =

We can use the unwritten cross to make this notation more appealing to a textual reading.

UNWRITTEN CROSS 〔 〕=〔 〕

Being able to identify identical replicas is an essential component of any transformation system.
Operationally = means we can identify replicas in a potential cacophony of differences. It signals
that the two forms it identifies can be freely exchanged. It is also a promise that any particular
form will not turn into something else at the conceptual level. Identity vows conceptual fidelity.
From the LoF perspective, = is an abbreviation that we will later be able to eliminate via void-
equivalence. Identity marks a failure of perception, an inability to see difference. Identity turns
into Equality when we assert axioms that identify different structures whose differences we
choose, for some reason, to ignore. An assertion of equality identifies a voluntary blindness.

Principle of Containment: There is only one relation, containment.

One relation only is another way that LoF is not logic. “We have allowed only one kind of relation
between crosses: continence… a cross is said to contain what is on its inside and not to contain
what is not on its inside.”9 Unfortunately this definition includes a logical concept, NOT, as
metalanguage. We will later eliminate it. The goal is to express an empty parens as a containment
relation, without the support of logic, sets or numerics. Of course, containment is just a convenient
and perhaps evocative label for a collection of properties that differentiate LoF forms from other
structural relations such as equivalence, ordering, and the denizens of group theory. The semantic
intent of containment is to identify distinction, or difference.

Containment is a relation between content and context, not between two content forms.

The direct structural implication is that we cannot be completely outside and still be able to
observe anything. Observation is mediated by a common environment. With containment as the
only relation, there is no objective perspective and there is no direct observation.

If there is only containment, how then can we interpret the Law of Calling, in which two parens
appear to not-contain each other?

CALLING () () = ()

�11

It is a violation of the Principle of Void to assign a relation to juxtaposition of two forms, that is,
to empower the void space between forms with an ability to bond forms together in a relation.10

Forms within the same container are independent because the void within a container has no
properties to support a mutual relation. One way to interpret Calling is that not-contain is not
possible. Two apparent parens taken together without a mutual container is an illusion, there is
only one. An alternative reading is that there is exactly one unique ground object () so that
replication can occur only in notation, as syntax, and not in meaning, as semantics. Multiple
ground objects refer specifically to the single ground object. A third reading is that these two
parens are indeed contained by an unwritten cross. The form ()() necessarily implies an
unwritten container,〔()()〕. From this perspective two crosses, each NOT contained by the
other, are instead mutually contained by an outer container.

CALLING 〔 () () 〕=〔 () 〕

The unwritten container allows us to express Calling solely as containment relations. There is only
containment of one form by another. Negation of containment is a meaningless concept within the
LoF formalism, since every form is contained. Coming to terms with this reading is a central
theme of this article.

Principle of Void-equivalence: Void-equivalent forms are syntactically inert and
semantically meaningless.

If void has no properties, then how can we interpret the Law of Crossing, in which void appears
to have a specific representation?

CROSSING (()) =

The Principle of Void extends to explicitly recorded forms that are defined to be void-equivalent by
rule and are thus equivalent to their absence. This is another fundamental difference between
symbolic notation and LoF. In LoF some forms are meaningless illusions. These forms can be
mentioned but are nonetheless useless. We’ll call the form on the right-hand-side of Crossing a
double-parens. An alternative perspective is that the double-parens of Crossing is indeed
contained, by an unwritten cross. Although it is possible to call upon the Law of Crossing itself to
assure an outer container, that type of design choice entangles transformation with representation.

CROSSING 〔 (()) 〕=〔 〕

You may have noticed an extreme dependence upon both metalanguage and conventional
concepts to describe the LoF Principles. Both Void and Existence seem to incorporate the logical
idea of NOT.11 What does only one relation mean in the face of replication? Calling can be read as
denying the concept of accumulation while its apparent multiplicity at least invites the concept of
counting. And then there is the imaginary quality of equality, a distinction that fails to distinguish.
Eliminating these concepts is our major challenge.12 The key is to be found in the Principle of
Void-equivalence: clarity is exposed through the deletion of meaningless form.

�12

3. Propositional Logic
Propositional logic is an interpretation of parens forms. Charles S. Peirce introduced iconic
containment as a notation for logic (both propositional and predicate logic) at the turn of the
twentieth century.13 His Existential Graphs introduce many of the concepts incorporated into
Laws of Form, with two major exceptions. Peirce’s graphs are inferential, wedded purely to logical
inference, while Spencer Brown’s forms are equational, wedded to an algebraic perspective
independent of the domain of propositions. The second difference is that Peirce maintains
variables that stand in place of logical propositions, while Spencer Brown has developed an
arithmetic of form, without variables and without propositions.

Propositional logic is a conceptual system resting upon the grounds of TRUE and FALSE. This
duality creates the concept of negation. In the absence of duality, the map from logic to LoF is
many-to-one. When propositional constants and connectives are transcribed into LoF forms, a
diversity of apparently fundamental logical concepts evaporate.

TRUE
NOT FALSE
IF FALSE THEN FALSE ☞ ()
TRUE OR FALSE
FALSE NOR FALSE

The single empty parens cannot be said to mean the bevy of logical alternatives, since those
logical alternatives classically define meaning itself. The validity and the value of our formal
concepts are defined as being either TRUE or FALSE. The above logical expressions are syntactically
equivalent but to be semantically equivalent logic would need to be conceptually redundant. ()
shows us a single more fundamental concept that gives rise to the logical expressions that we
perhaps indiscriminately associate with rational thought and understanding. Spencer Brown,
Bateson, Varela, Heylighten and others have identified that single ur-concept: distinction. Spencer
Brown’s insight is that distinction is “a form of closure”.14 The cross marks a severance. Bateson’s
insight is that distinction is necessarily cognitive, that “difference is an idea.”15 Distinction has no
physical presence and no metric, no place and no time.

The explanatory world of substance can invoke no differences and no ideas but only
forces and impacts. And, per contra, the world of form and communication invokes
no things, forces, or impacts but only differences and ideas.16

Some logical expressions are so degenerate that they disappear upon transcription.

FALSE
FALSE OR FALSE ☞
FALSE OR FALSE OR FALSE

These expressions fail to make a distinction, they can be completely ignored without loss. Yes, the
concept FALSE is an unnecessary complexity that clouds rather than enlightens iconic thought. The

�13

LoF arithmetic also includes an axiom that further extends the domain of meaningless concepts to
meaningless but explicit forms that provide illusionary structure for meaningless concepts. These
expressions too can be eliminated from rational cognitive processes without formal loss.

NOT TRUE
NOT NOT FALSE
IF TRUE THEN FALSE ☞ (()) =
NOT TRUE OR FALSE
NOT (TRUE OR FALSE)

The parens can be directly transcribed as logical NOR. Should we permit NOR to have any number
of arguments, parens then expresses the entire diversity of the logical connectives. Here is a direct
map from variary17 NOR to LoF:

NOR[] = TRUE ☞ ()

NOR[a] = NOT[a] ☞ (a)

NOR[a,b] ☞ (a b)

NOR[a,b,c,…] ☞ (a,b,c,…)

Classical logic imposes a requirement that connectives have exactly two arguments, without
recognizing the fundamental idea of difference. Logical truth and negation and disjunction differ
only in the number of the contents of a parens. Theoretically logic should not be built upon
counting. From the LoF perspective, how many contents must be irrelevant since contents are
mutually independent. Only containment matters. We call a container with no contents a constant;
a container with a single content form, a property; and a container with two content forms, a
binary operation. More than two content forms are called n-ary operations, with n being a count of
the contents. In most computational languages, AND and OR, for example, are n-ary, but with the
magnitude of n not being an essential factor. Computational AND, for example, terminates
whenever the first FALSE argument is encountered, regardless of how many more arguments there
may remain to be evaluated.

Symbolic logic is built upon the duality of TRUE and FALSE, it examines both sides of the coin
separately. In contrast iconic logic is built upon the unity of distinction, it examines the coin as a
whole. Taking sides is a choice of perspective, not a source of knowledge and truth. 

�14

4. Annotated Parens
To address computational and symbolic form, we will need to label different textual occurrences
of parens, creating a hybrid notational system, annotated parens. Labels provide reference to both
time and place. As emphasized by Spencer Brown, the cross is indeed a label, but only when
viewed from a particular side, what we call outside. The cross allows us to know our place (we are
not inside because we can see the label) and to know our time (by changing sides, we generate a
before and after). Spencer Brown’s cross rightfully carries no additional labels, however this is
insufficient for bridging the gap between symbolic and postsymbolic concepts. In the presence of
many boundaries we will need to know which boundary is which. Labelling provides multiple
reference and is at the heart of the concept of abstraction. Yet it can be considered to be
annotation, coming from the metalanguage and not an essential aspect of parens form.

With labelling, we can express the generic parens form of the contains relation.

container a contains container b (b)a

To map to symbolic notation, we will also need a label for void, a drastic departure from the intent
of LoF forms. The problem can be mediated by using a token for void, ø, only in conjunction with
an assertion that no other forms are contained by a container of ø. Rather than labelling void,
then, ø is a token from the metalanguage that labels a constraint on the presence of contents.

container a contains no forms (ø)a
container a contains no forms other than b (b ø)a

4.1 The Annotated Arithmetic of Form
Labels provide sufficient mechanism to explicitly represent the LoF arithmetic within a symbolic
language with one binary contains relation. Here are Crossing and Calling dressed up with
computational labels and an unwritten cross.

CROSSING (()) = ☞ 〔 (ø (ø)a)b 〕=〔 〕
CALLING () () = () ☞ 〔 (ø)a (ø)a 〕=〔 (ø)a 〕

We have acknowledged the absence of contents within container a by inserting ø. The token ø
also identifies that the non-empty container b may contain no other forms if Crossing is to apply.
The multiple occurrence of the label (ø)a in Calling acknowledges that the ground object is

unique.18 Both Laws need a void-equivalent outermost container, the unwritten cross. The
outermost container for Crossing acknowledges the use of absence in the LoF notation, while the
outermost container for Calling eliminates our propensity to assign a relational property to objects
that share only nothing. 

�15

4.2 Incidental Structure
Our representation of the LoF axioms incorporates some implicit conventions that must be made
explicit to a computational pattern-matcher. The symbolic description of a pattern-based
transformation rule needs to identify four different types of structure.

— explicit: necessary structure that must be present
— contextual: structure that is contextually necessary but not changed
— incidental: structure that is incidental to the transformation, and not changed
— forbidden: structure that when present blocks a transformation

Explicit structure is explicitly present in a rule. Contextual structure is present in a rule but passes
through a transformation unchanged. Incidental structure is not present in a rule and is passed
through a transformation unchanged. Forbidden structure is present in a rule and causes a rule
application to fail when it is found in the arrangement being transformed.

Applications of Crossing and Calling are independent of other forms within their context. This
feature is a direct consequence of the Principle of Containment, that forms within any container
are independent. To express this feature symbolically, we will need a generic pattern variable x_
to stand in place of any and all incidental structure that is irrelevant to the identification of
patterns within rules. The underbar is an instruction to apply the label x to this superfluous
structure, which may consist of zero, one or many independent forms. Thus every labelled parens
will contain either ø to indicate “nothing else” or x_ to indicate “anything else.” We now have

CROSSING (()) = ☞ 〔(ø (ø)a)b x_〕=〔 x_〕

CALLING () () = () ☞ 〔(ø)a (ø)a x_〕=〔(ø)a x_〕

To make the implicit conventions of string notation explicit, we’ve added these structural
categories:

— explicit: existent typographical forms that are modified by rule
— contextual: typographical forms that are necessary but not modified by rule
— incidental: forms subsumed by the generic pattern variable x_
— forbidden: the presence of a ø token forbids other forms

One final notational elaboration is that transformations are insensitive to depth of nesting. Since
the only type of form we have is a container, this elaboration allows us to apply the same
transformation mechanism to every container regardless of depth of nesting. That is, every
container is a locally outermost container. The outermost container can then be generic, identified
by any labelled parens as well as by any unwritten cross. Again this is a direct consequence of the
Principle of Containment: forms are independent regardless of their location in breadth or in depth.

CROSSING (()) = ☞ ((ø (ø)a)b x_)d = (x_)d
CALLING () () = () ☞ ((ø)a (ø)a x_)d = ((ø)a x_)d

�16

Symbolic conventions are ill-suited for specifying transversal of depth. Symbolic representation
flattens the nesting relation between containers, changing the spatial correspondence between
inside and outside into replicated labels in specific locations within a string expression.
Distinction networks, a postsymbolic network notation introduced later, are much better adapted.
For now, we’ll simply define a self-similar operational rule for pattern-matching: transformations
apply to all containers concurrently. The implementation of this rule, of course, will differ
depending on hardware capabilities.19

Annotated parens notation is a bridge to the representation of containment forms in symbolic
languages. Eliminate the annotations to reach LoF forms, incorporate the annotations to generate
symbolic expressions. Since these annotations are necessary for string expressions, they identify
formal differences between iconic and symbolic notations for LoF. String notations take the idea
of labelling an object as a given freedom. Using the same label to identify different references to
that object is also taken for granted. However, the Principle of Void for iconic notation suggests
that labelling does have a cost, a label converts nothing into a boundary. The Principle of
Existence asserts that a labelled (bounded) void is different than an unlabelled void. At a
fundamental level, ()a is not the same as (). Similarly (ø) is not the same as ().

There is an analogy in symbolic string notation, the difference between a function symbol and an
object symbol. Peano’s definition of natural numbers includes the object 1 (which we will label
here as obj1) and the function next(objn) which identifies the object that follows n. We have then

obj2 = next(obj1)

obj3 = next(obj2) = next(next(obj1))

Symbolic systems label different numerical objects with different names (the cardinal numbers),
but do not label different applications of the next function. We do not say

obj3 = next2(next1(obj1))

Section 5 that follows shows that replicating object labels is necessary to identify relations
between objects. Relations are collected together by the symmetric operator AND, so that multiple
relations are displayed in breadth (e.g. R(a,b) AND R(b,c)). The relation itself does not require
unique labelling since an instance is labelled by its arguments. In Section 6 we’ll see that
replication of object labels is not necessary for functions, since function application itself is a
method for generating labels.20 Still we do not provide a unique label for each use of the function
name. Functions however are composed together by asymmetric nesting in depth, for example,
add1(times3(obj1)). Symbolic notation has built into it a forced perspective that differentiates
between objects and processes, between form and transform, enforced by a structural difference
between breadth and depth and by an operational difference between symmetry and asymmetry.
Iconic containment unifies this fragmented perspective, permitting a broader, more general
conceptualization of formal description. The annotations added to each parens serve to separate
the object aspect of parens from its operation aspect, thus undermining its essential unity. Both
the nesting of function composition and the conjunctive composition of relations are notational
choices that are incidental to logical meaning. These choices are aspects of linear text rather than
inherent aspects of rational thought. 

�17

5. Restricted Predicate Calculus
Predicate calculus, also called first order logic, extends propositional logic with three concepts:
domains of objects, quantification and relations between objects. We’ll limit the domain of objects
to containers only, and extend propositional logic by one relation only, a contains b, represented
as a binary term Sab.

container a contains container b (b)a ☞ Sab

Both a and b are of the same type, but each is used in a different manner. It is as though we are
mixing functions freely with relations, which of course we are since containers are both. A
container acts like an active operator (it encloses its contents) and concurrently like a relational
object (it is enclosed by its environment). The functional form of containment, Pba, is the binary
function b is-contained-by a. We’ll use the active voice and call this function PUT.

PUT container b inside container a (b)a ☞ Pba

5.1 Domain
Since all forms are arrangements of containers, containment is a global property of the domain of
forms. We might approach a symbolic definition of the domain of LoF forms as a set of container
labels extended by two special tokens and one relation.

let C be a finite set of containers, labelled {a,b,c,…}
and let U and ø be special tokens,

then the contains relation S is on C union {U} to C union {ø}
and is a subset of C union {U} X C union {ø}

A Cartesian product of two sets, A X B, is the set of all possible ordered pairs. We can identify a
set C+ consisting of all containers plus the special tokens U and ø. For C+, the contains relation is
on a set. The contains relation associates two containers, both members of each pair come from
the same set C+. The two special symbols then require that some members of the Cartesian product
be excluded from valid containment relations. Later, several other constraints (the properties that
define containment) will render other members of the Cartesian product to be not valid.

The familiar Cartesian product however is biased toward flattened string notations. We could
unflatten the Cartesian promiscuity of all possible pairs of label replicas by considering the universe
of containment pairs to be branches of rooted trees rather than a square matrix of pairs. LoF
forms then are not strictly sets of relations, but rather belong to the graph category of directed
acyclic networks.21 In this non-Cartesian approach, we begin conceptually with a postsymbolic
domain of trees rather than building the nodes and links of trees from symbolic structures such as
the Cartesian set of all ordered pairs. Trees, like containers, represent their own structure when
recorded in two and three dimensions. The omnipresent unwritten cross is the universal root.
Replicated labels, when reunited as a single node with multiple links, convert trees into networks.
Later, Figure 7 shows the constraints of the contains relation in network form. The change of
perspective is from isolated binary relations that are later composed as sets or as conjunctions to

�18

the possible sets of these binary relations, to composable networks. Symbolically then, the domain
of contains is all well-formed (typographically balanced) parens forms. Geometrically, it is all
possible configurations of enclosed circles. Mathematically, it is the set of rooted trees. Physically,
it is all the ways that we can assemble physical containers, one inside another. The tokens ø and U
are not within LoF but rather are the cost of degrading LoF into a symbolic notation.22

5.2 Forms
A form is a valid configuration of containers. It is tempting to define parens forms in terms of the
conventional definition of well-formed parenthesis expressions:23

() is a parenthesis expression.
If x is a parenthesis expression, so is (x).
If x and y are parenthesis expressions, so is x y.

This definition in turn is modeled after the standard definition of expressions in propositional logic,

Propositional labels are expressions.
If P is an expression, so is ¬P.
If P and Q are expressions, so is P v Q.

It is the last line of the definition of parenthesis expressions that is suspect, because it constructs a
well-formed structure by an operation that does not involve construction by containment. Placing
x and y side-by-side introduces a conceptually separate method of construction. In terms of
propositional logic, negation and disjunction are different concepts. The definition of parentheses
confounds two different operations (containment and juxtaposition), and therefore does not
characterize the structure of a containment relation.

We’ll first define arrangements of containers inductively. We then rely upon the annotated parens
form to arrive at a compact definition.

ANNOTATED PARENS

() is a form. (ø)a
If b is a form, so is (b). (b)a
If b and x_ are forms, so is (b x_). (b x_)a

The first line defines a ground container with no contents. The second line permits containers to
be nested. The final line permits multiple contents. Of course, the pattern variable x_ is not a
form, it is an appeal to induction over any number of content forms. Induction is also presumed
by each of the above types of symbolic definition.

The problem introduced by the symbolic approach is to artificially differentiate breadth from
depth, when both are simply consequences of containment. A compact definition of containment
forms solely in terms of containment might look like this:

(x_) is a form, where x_ stands in place of any number of other forms, including zero.

�19

For now we’ll continue to explore conventional symbolic descriptions of arrangements of
containers, with the intention of showing where the assumed bridge between symbolic notation
and iconic form breaks down.

5.3 Ordered Pairs
An ordered pair is two labels arranged in order, with each position of the pair identifying a
specific object. Generally sets of ordered pairs can stand in place of any symbolic relation.24 Here
the ordered pair (a,b) identifies a containment relation, with the first label identifying a container
and the second label identifying a contained form. Both a and b are from the same set of container
labels, although a may have other contents and b might also have contents. By describing
containment using ordered pairs, we are simply saying that containment is a binary relation.

(b)a ☞ (a,b)

For an ordered pair (x,y) to represent a containment relation, the existence constraint on the
domain is that it includes only objects x for which at least one y exists. All objects in the domain
can be containers. Thus we have introduced the null label ø to express an empty container as a
pair, (a,ø). The existence constraint on the codomain is that it includes only objects y for which
at least one x exists. This constraint is met since all forms are contained. The unwritten container
U is necessary only when we consider multiple forms at the top level of a compound form.

DOMAIN ∀x ∃y (x,y) requires ø in codomain
CODOMAIN ∀y ∃x (x,y) requires U in domain

The structure of ordered pairs then shows containment as sets of pairs of labels. LoF forms
become sets of pairs.

empty container (ø)a ☞ {(a,ø)}

single containment (b)a ☞ {(a,b)}

nested containment ((c)b)a ☞ {(a,b),(b,c)}

multiple containment (b c)a ☞ {(a,b),(a,c)}

unwritten container 〔 b c 〕 ☞ {(U,b),(U,c)}

Three related mechanisms are necessary to represent containment as ordered pairs:

— sets as a collection device for pairs and for ordering
— symbolic replication to generate multiple copies of labels, and
— specific locations of replica labels to indicate structure.

Successively nested containers are represented by several ordered pairs collected together as a
set. In the case of the example below, ((((e)d)c)b)a, these pairs indicate levels of nesting by
showing the same label in the second position and also in the first position of a different pair.

�20

Containers with multiple contents are also represented by a set of ordered pairs, in this case with
the same first label for each pair. In the example below, (b c d e)a, the same first label identifies
the common container.

NESTED CONTAINMENT ((((e)d)c)b)a ☞ {(a,b),(b,c),(c,d),(d,e)}

MULTIPLE CONTAINMENT (b c d e)a ☞ {(a,b),(a,c),(a,d),(a,e)}

Both nesting and multiple containment are expressed by sets of ordered pairs. More subtly, free
replication of labels allows us to construct sets of ordered pairs that are internally strung together
to represent relationship in breadth and in depth. Threading of freely replicated labels is how
symbolic notation conveys and degrades the iconic structure of containment. When we get to
iconic distinction networks, we’ll see that many symbolic properties do not make sense within a
postsymbolic form. Dnets require none of the three mechanisms of ordered pairs mentioned
above.

5.4 The Ordered Pair Arithmetic of Form
Calling and Crossing can each be expressed as a change in a multiset of ordered pairs. We can see
that the arithmetic of form can be expressed as deletions of ordered pairs.

CALLING () () = () ☞ ((ø)a (ø)a x_)d = ((ø)a x_)d

☞ {(d,a),(d,a),(a,ø),(a,ø)}
 = {(d,a), (a,ø) }

The rule specifies that replicated empty containers can be deleted. Here, the ordered pairs are
stacked vertically to draw attention to the pairs that are deleted. The deleted pairs correspond to
the form (ø)a. The incidental structure x_ is not included in the ordered pairs since incidental
structure is independent of the Calling transformation. Occurrences of the ground object (ø)a do
not have different labels because empty parens forms are identical. This then aligns Calling with
the deletion and creation of replicas within a multiset of ordered pairs.25

Crossing gives permission to delete a double-container, or constructively, to add a double-
container.

CROSSING (()) = ☞ ((ø (ø)a)b x_)d = (x_)d

☞ {(d,b),(b,a),(b,ø),(a,ø)}
 = { }

�21

5.5 The Contains Relation
The symbolic flattened viewpoint of a relation is that objects are singular (unique) and relations
between objects define composite structures. In predicate relations the nesting of containers is
distributed over replicas of labels within different ordered pairs, while the collection of pairs is
patched together with conjunctions. In predicate functions multiple containers are represented by
nested function calls, which are more fully described in Section 6.

 PARENS ☞ ANNOTATED ☞ RELATIONS ☞ FUNCTIONS

 empty
 () (ø)a Saø Pøa

 single
 (b) (b)a Sab Pba

 nested
 (((d))) (((d)c)b)a Sab & Sbc & Scd PPPdcba

 multiple
 (b c d) (b c d)a Sab & Sac & Sad PdPcPba

 unwritten
 〔 b c 〕 (b c)u SUb & SUc PbPcU

Figure 3: Crossing the Iconic/Symbolic Chasm

Figure 3 compares the diversity of forms of containment in parens notation to annotated,
relational and functional notations. What stands out is that the structural varieties of containment
that are illustrated naturally in parens require the addition of elementary logic (the connector
AND) to compose relations. Apparently we cannot engage in a symbolic relational language
without relying upon the connectives of propositional logic. This same issue arises with ordered
pairs and the introduction of set membership to represent forms as collections of pairs. For our
purposes, ordered pairs and binary relations are different notations for the some things. Both
require threading of symbolic replicas to identify particular types of structure. We might just as
well say

(a,b) =def= Sab

In contrast, function nesting provides a composition mechanism for the PUT function that does
not require the replication of labels. Where relational notation threads labels, function notation
differentiates types of structure by different positions within nested function calls. Multiple
contents are nested as the second arguments of PUT functions, while contents nested in depth are

�22

in the position of the first argument. Temporal sequencing of nested functions replaces spatial
sequencing of replicated labels. Here is the comparison:

 ANNOTATED ☞ RELATIONS ☞ FUNCTIONS

NESTED CONTAINMENT ((c)b)a Sab & Sbc Pc(Pba)

MULTIPLE CONTAINMENT (b c)a Sab & Sac P(Pcb)a

What is apparent here is that parens forms are both objects constructed by relations (seen from
outside) and processes connected by functions (seen from inside).

5.6 Quantification
Quantification has deep roots, going back to the distinction between the concepts some and
all made by Aristotle. Universal quantification, ∀x, applies to all members of a domain.
Existential quantification, ∃x, applies to at least one.

UNIVERSAL QUANTIFICATION ∀x Every x is a container
EXISTENTIAL QUANTIFICATION ∃x At least one x is a container

The empty container could be defined in the same manner as the empty set { },

AXIOM OF EMPTY SET { }a ☞ ∃a∀b ¬(b ∈ a)

EMPTY CONTAINER ()a ☞ ∃a∀b ¬Sba

However this definition confuses set membership with containment while calling upon an
interpretation of ¬ as does not contain. Since everything is contained by some container (and since
the LoF axioms do not call upon negation, see Section 8), there is no occasion to assert non-
containment. We will instead adopt the convention that a negated term indicates an invalid form.
The negation sign in front of Sba then indicates that it is not possible for all containers b to
contain the same container a, a reasonable constraint when one considers physical containers. As
well we avoid the rather absurd consequence of set theory, that every set contains the empty set.
The subtle difference in the use of negation, between declaring that a given form does not contain
another given form and declaring that it is not possible for a given form to contain another given
form, will not lead to confusion. The does-not-contain interpretation is never used, while the
cannot-contain interpretation is necessary to define the meaning of containment.26

One consequence of requiring all forms to be containers is that a universal outermost container, U,
becomes necessary. So that U meets the containment constraint, it must be excluded from the
codomain of the contains relation.27

NOT CONTENTS ¬(U)a ☞ ∀a ¬SaU

The negation sign in front of the parens form (U)a and in front of the relation SaU indicates a
containment structure that is not permitted within the conceptualization of containment. It does
not indicate that container a does not contain U, although this is indeed TRUE. Denial of being

�23

contained applies only to an unwritten cross since it exists solely as a void-equivalent outermost
container.

As it turns out, quantification is remarkably sensitive to sets without members. To further
reconcile symbolic and iconic approaches, we have elected to construct a special null token, ø.
This approach achieves the objective of making it possible to express the empty container by a
valid contains term, Saø. The special token is defined, however, as not existing.28 Of course, the
representation “ø” exists, otherwise we would not see it. However, the token has no referent.

DEFINITION OF ø ø =def= ¬∃a a = ø

This definition unfortunately rests upon equality while the Principle of Existence defines absence
as an inequality. We are in danger of confounding notation with meaning.

EXISTENCE () ≠

Within predicate calculus quantification, there is following relation between existence and
negation:

NOT EXISTS ¬∃x Px = ∀x ¬Px

The assertion of non-existence of a single object with a given property P is the same as asserting
that all objects do not possess the property P. We then arrive an alternative definition of ø. which
conforms to the Principle of Existence.

ALTERNATIVE DEFINITION OF ø ø =def= ∀a a ≠ ø

The sensitivity to sets without members is an artifact of a conceptualization that objects must be
in sets in the first place. This in turn creates a necessity for manipulation of symbols (by
rearrangement for example) rather than the more elegant deletion of unnecessary symbols. By
choice, we will still employ ø within symbolic terms. Its purpose after all is to define an empty
container using a predicate calculus contains relation.

EMPTY CONTAINER (ø)a ☞ ∃a Saø

Although the empty container is now described by an atomic contains formula, the label ø has no
referent. From an iconic perspective, the Principle of Void forbids us from labelling nothing. In
any image, the object of focus is brought into contrast by negative space, that is, by space that is
not the object. Negative space pervades an image, there is no particular locale that supports the
“nothing” label and no incentive to label the background as an object. We are left with a
conundrum, a non-thing ø that is not within the domain of containers yet is being used within a
containment relation.

An alternative is to omit ø and construct Sa, a ground object ()a. Sa is then no longer a relation,
it turns into a property asserted upon an atom with no interior and thus no capability to contain.
If we were to add something to its inside (a common process in LoF), then the type of thing
changes, from a property to a relation. So much for consistency.

�24

Another alternative is to call upon what in predicate calculus is known as the problem of vacuous
truth. When ∀xPx is asserted, the assertion is true whenever the set of all x is empty. For example,
all cats are white is a true proposition whenever there are no cats.

VACUOUS NOTHING (ø)a =def?= ∃a∀z Saz & z ∈ { }

Here we are simply embracing the weakness of set theory in addressing that which is not. ø is also
necessarily excluded from the domain of the contains relation, ø is not a container.

NOT A CONTAINER ¬(a)ø ☞ ∀a ¬Søa = ¬∃a Søa

This definition supports our convention of negation as invalid form. The assertion that there does
not exist an a that is contained by ø however does not convey the intent that ø is not a container.
Bottom line is both that we will need to be very careful about using symbolic logic to describe
LoF forms, and that we will eventually need to abandon hopes that LoF can even be described
within the tools of predicate calculus.

5.7 Properties of Containment
Relations have a diversity of properties. Different collections of properties identify the well-
known types of relation. For example, a relation that is reflexive, symmetric and transitive is an
equivalence relation. Properties of relations act just like axioms to define structural constraints
on forms. These properties assert that some structures are invalid. The physical containment
relation is irreflexive and asymmetric and neither transitive nor intransitive.

Figure 4 shows the relational constraints that define our intended interpretation of containment,
expressed in both the annotated parens and relational notations. Later, Figure 7 shows these same
relational constraints visualized as postsymbolic network structure.

 CONSTRAINT ANNOTATED RELATIONS

 containment (b)a ∀b∃a Sab

 empty container (ø)a ∃a Saø

 not a container ¬(a)ø ¬∃a Søa

 not contents ¬(U)a ¬∃a SaU

 irreflexive ¬(a)a ¬∃a Saa

 asymmetric29 (b)a ➞ ¬(a)b ∀a∀b ¬.Sab & Sba

 physicality30 ¬.(c)a & (c)b ∀a∀b∀c ¬.Sac & Sbc

Figure 4: Symbolic Constraints that Define Containment

�25

The relational constraints that define valid symbolic terms for containment also describe the
structural characteristics of iconic parens forms. That is, parens forms provide a semantics for the
symbolic expressions. The containment constraint is fundamental, all forms are the contents of
some container. This constraint eliminates side-by-side containers as valid forms. Forms, like
symbolic expressions, are singular objects. Since any container can contain any other container,
any pairing of container/contained is permissible except for two formal (and physically intuitive)
restrictions: irreflexivity and asymmetry. The physicality constraint can be also taken as a concrete
description of forms, constraining representation to the possible ways that physical containers can
be composed.

Irreflexive and Asymmetric
No object can contain itself. This irreflexive constraint asserts that any ordered pair in the form
(a,a) is not valid.

STRICT CONTAINMENT ¬(a)a ☞ ¬∃a Saa

Although all containers can contain any other container, some specific containment relations are
excluded. Locally, for specific forms, if a contains b, then it is not possible that b contains a,

NO CYCLIC CONTAINMENT (b)a ➞ ¬(a)b ☞ ∀a∀b ¬.Sab & Sba

The asymmetric constraint forbids reentrant containment forms. The intention is to exclude cyclic
chains of containment, a refinement to be addressed later by distinction networks. Asymmetric
relations are necessarily irreflexive.

Physicality
In physical models, no object can be contained by two different containers, because overlap
(intersection) is not physically possible when container boundaries cannot be breached.
Symbolically, however, the label of an object can be replicated and placed in different containers,
in violation of the no overlap restriction. Structures with replicated labels are necessarily
imaginary. Replication of labels is a primary difference between symbolic and physical models of
containment.

PHYSICAL CONTAINMENT ¬.(c)a & (c)b ☞ ∀a∀b∀c ¬.Sac & Sbc

The physicality constraint is not an aspect of perfect continence within LoF, and is not enforced in
the definitions that follow. However, it is of interest that the transformation rules of LoF precisely
specify ways to eliminate (and to create) symbolic overlap of containers. For some strict
definitions of physical containment, the deletion of a container also deletes its contents. In LoF,
containers can be deleted while their contents remain. There is only one axiom, Involution, and
only one structure, the double-parens, in which this occurs. 

�26

Transitivity and Intransitivity
To consider transitivity of containment, two types of containment need to be distinguished.
Shallow containment is not transitive; if a shallowcontains b and b shallowcontains c, then it
does not follow that a shallowcontains c. A person is nourished by broccoli, for example, and
broccoli is nourished by fertilizer, but that does not mean that a person is nourished by fertilizer.
A bottle may contain water and the water may contain salt, but the bottle does not contain the
salt.

We'll call the transitive version of containment deepcontains, Dab. For example, if a shopping cart
contains a box of apples, then the shopping cart deepcontains the apples, as well as
shallowcontains the box they are in.

TRANSITIVE ∀a∀b∀c Dab & Dbc . ➞ Dac

The ordered pair structure of containment that we have adopted, Sab, is shallowcontains.
Consider the form ((c)b)a. which we have encoded as {(a,b),(b,c)}. If we were to consider
containment to be transitive, then the pair (a,c) must be the case. However, the set of ordered
pairs {(a,b),(b,c),(a,c)} describes the form (c (c)b)a.

Although the shallowcontains relation is not transitive, it is also not intransitive. The genealogical
isParentOf relation is an example of an intransitive relation. If a isParentOf b and b isParentOf c,
then it cannot be the case that a isParentOf c.

INTRANSITIVE ∀a∀b∀c Rab & Rbc . ➞ ¬Rac

If we were to declare in the form above that the pair (a,c) is forbidden, then we could not
construct the form (c (c)b)a. However, violations of intransitivity will also be violations of the
physicality constraint, because a contradiction of intransitivity implies that there are at least two
different containers that contain the same object.

Essentially LoF forms do not accommodate the concept of transitivity. Structural transitivity
incorporates the idea of transitive closure, that missing relations can be provided by rule. Void-
based LoF uses a completely different mechanism. The axiom of Pervasion, described in Section
8, asserts that boundaries are semitransparent to forms on the outside. Outside forms are
everywhere present at deeper levels, their explicit presence is optional since deeper replicas are
void-equivalent. Again we see that LoF forms possess an entirely different kind of structure than
symbolic expressions. 

�27

6. PUT Functions
The contains relation can viewed as a construction, that of inserting or putting one container inside
the boundary of another container. Expressing containment as a function permits access to the well-
developed field of function theory. LoF then specifies a particular variety of functional structure, a
variety that, as might be expected, is not widely-studied.31 We’ll abbreviate the PUT operation as Pab.

PUT a into b ☞ b contains a

Pab ☞ Sba

Every form can be PUT into some other form, satisfying the existence constraint for functions.
Since the result of putting one specific form into another generates a new unique form, the
uniqueness constraint for functions is also satisfied.32

Relational description is anchored in space, such as in a relational database. Functional
description is anchored in time, such as in a computational algorithm. The label Sba describes an
object or circumstance. The label Pab describes an action, or transformation. Both incorporate the
restriction of sequential unfolding, each limited to its own dimension of descriptive existence.33
The parens boundary, on the other hand, integrates both space and time into the same form,
boundary as contained object from the outside and boundary as environmental process on the inside.
Unlike characters of text, boundaries are both relations that separate and functions that connect.

Containment forms are compositions of PUT function applications. Function composition is
expressed in string form by nested function invocations. PUT converts the textual necessity of threaded
relational labels into dynamic nesting of non-replicated function application labels.34 Function
nesting and conjunctive listing then align to provide both spatial and temporal expression of
containment in string notation. For example, the replicated label c in the ordered pairs description
below is no longer required since it has been replaced by two applications of PUT into container c.

(a b)c ☞ {(a,c),(b,c)}

☞ PUT a into (PUT b into c) = PaPbc

We can PUT a form into a container whether or not that container has contents. This subtle shift
essentially eliminates the textual glue mechanisms, such as logical conjunction and set
membership, that are necessary to express multiple contents symbolically. This shift in notational
perspective also changes our conceptualization of a container object from an isolated boundary to
a boundary together with its contents. The domain is no longer a collection of individual
containers, it is a collection of forms. The PUT function exhibits closure. Applying PUT to elements
of the domain of function compositions generates another function composition. The algebraic
structure of PUT thus consists of the following

The empty container is the null operation, Pøa = Paø.
The domain A inductively includes all constructible containment forms.
The binary PUT operation Pab is on a set, mapping A X A ➞ A.

�28

At this point, PUT operations on parens forms constitute a magma, ⟨A,P⟩, a set A equipped with a
single closed binary operation P on the set A. Magmas impose no other axioms on their algebraic
structure. The definition of PUT can be applied to the construction of rooted trees. One special
object U is the root for all forms. Composition consists of attaching an existent rooted tree to the
current root by putting any form a into U, via the function application PaU. The PUT operation
itself can be defined iconically as a transformation

Pab =def= (x_)b ==> (a x_)b

The incidental structure notation x_ acknowledges that function application is independent of any
prior contents of b. No assumptions are made about x_, including the possibility that a is already
contained by b and including the possibility that b is empty. The origin of the form a is not
identified. Functions track changes rather than states. The arrow, ==>, can be read as
substitution.

6.1 PUT Notation
We could, of course, use an infix notation for the binary PUT operation, such as

(a)b ☞ Pab alternatively a ⨭ b

However, there is a standard compact algebraic notation for multiple applications of the same
function. A function is represented by concatenation of its arguments, without writing the
function name itself. In the case of PUT, Pab is written simply as ab. Brackets can be added, when
necessary, to disambiguate the order of operations. To specify which function application is
intended to occur first, we’ll use square brackets rather than the customary parentheses within
the standard compact notation. For example

(a b)c ☞ PaPbc alternatively a[bc]

The functional form a[bc] reads: PUT b into container c and then PUT a into the result, effectively
putting a into c. This compact convention is a clear example of a space/time tradeoff within
textual notation. Each occurrence of the operator P identifies a stack with exactly two arguments
that follow. Should another P occur, that entire stack is treated as one argument. When the P flags
are removed, the ordering of arguments is lost and must be replaced by brackets that identify the
order of operations. That is, stack ordering in time is replaced by group ordering in space. The
central observation however is that iconic parens do not impose symbolic ordering markers and
thus are fundamentally more expressive than textual expressions. The intent of this and the
following subsection is to demonstrate the equivalence of relational and functional thinking via
their shared property of being expressed in textual strings.

The challenge with any function application notation is that the instruction to apply does not
resemble the result of application. In computation, this problem has been well studied for the
substitution function. Substitute A for B in C might be abbreviated as subst(a,b,c), but the
abbreviation does not resemble the form of the new expression cnew. In the case of PaPbc above,
we begin with empty container c and successively modify it by adding new contents

�29

()c ☞ c

(b)c ☞ Pbc = cnew
(a b)c ☞ PaPbc = Pacnew = cnewer

We can take the composition of operations PaPbc to be a representation of (a b)c, however it
would be necessary to replay the construction sequence to retrieve the resultant iconic form.

We will also need to specify explicitly that container c begins the construction empty via Pøc. The
empty container () could be considered to be a ground object, however for PUT with pattern
matching variables, every container has an implicit “and other contents” structure, (x_)a. This
then requires us to declare explicitly when a given container is empty. For that we can use ø.
We’ll also introduce a skeleton abbreviation E for an empty container, Pøc. Although every empty
container is identical, we could fudge this notation as Ec to preemptively declare a label for the
currently empty container c.

(ø)c ☞ Pøc alternatively øc or Ec or E

(a)c ☞ PaPøc alternatively a[øc] or aEc or aE

(a b)c ☞ PbPaPøc alternatively b[a[øc]] or b[aEc] or b[aE]

When the skeleton notation is intended to track construction of an arithmetic form from void,
subscripted labels can be omitted, returning the functional representation to the unlabeled parens
format. The skeleton notation shows clearly that the two arithmetic rules are associative variants
of the same sequence EEU, yet yield different results. In this notation we can see that the rules of
the arithmetic are an explicit statement of non-associativity.

CROSSING 〔 (()) 〕=〔 〕 ☞ [EE]U = U
CALLING 〔 ()() 〕=〔 () 〕 ☞ E[EU] = EU

6.2 Construction of Functional Forms
Any particular form can be expressed as a series of PUT operations into labelled containers. The
empty double-container (()) expressed as PUT operations is

((ø)a ø)b ☞ PPøaPøb or PEaEb alternatively EaEb

We have paid a price for the freedom provided by pattern variables, since they make algebraic
specification easy at the cost of a more complicated notation for arithmetic forms. For functional
expressions, specifying transformation from an existing form to a new form is more elegant than
constructing the new form from scratch since each iconic arithmetic form is a record of its own
construction. For example, to PUT any form into any other form is expressed concisely as

((x_)a y_)b ☞ Pab alternatively ab

�30

but to PUT any form into an empty container, the empty container needs to have a label in order to
avoid ambiguity during later construction.

((x_)a ø)b ☞ PaPøb or PaEb alternatively aEb

Exactly two empty containers as the content of the same empty container can be expressed as

((ø)a (ø)b ø)c ☞ PPøaPPøbPøc or PEaPEbEc alternatively Ea[EbEc]

Figure 5 contains an example of a LoF arithmetic form first annotated and then expressed as a
sequence of PUT construction operations. To suppress algebraic generality, the specific arithmetic
form must be explicitly constructed from empty containers. That is, every container must be
introduced as initially empty within the annotated parens form.

parens (() (() (())))

annotated parens ((ø)f ((ø)c ((ø)a ø)b ø)d ø)g

PUT functions PPPabPcdPfg with all labels i: i=Pøi

PUT functions with E PPPEaEbPEcEdPEfEg

compact [[EaEb][EcEd]][EfEg]

compact labels only [[ab][cd]][fg] with all labels i: i=[øi]

skeleton E only35 [[EE][EE]][EE]

Figure 5: Functional Notations for Constructing Parens Forms

Forms with multiple contents can be constructed by different sequences of operations. The
example form above might also be expressed as

PfPPcPPabdg alternatively Ef[[Ec[[EaEb]Ed]]Eg] or E[[E[[EE]E]]E]

In general, the order in which multiple contents are PUT into the same container does not matter.
This commutativity over sequence of operations converts spatial commutativity into temporal
commutativity, and foreshadows the parallelism of the LoF transformation axioms in Section 7.
Embedded within the above PUT description of the example is the entire set of ordered pairs that
define the example as a contains relation, one P flag for each ordered pair.

6.3 Properties of the PUT Function
The common properties of functions include associativity, commutativity, identity, inverse, and
idempotency. PUT is neither associative nor commutative, as illustrated by these examples.

�31

NOT COMMUTATIVE ((x_)a y_)b ≠ ((y_)b x_)a ☞ Pab ≠ Pba
 alternatively ab ≠ ba

NOT ASSOCIATIVE ((a x_)b y_)c ≠ (a (x_)b y_)c ☞ PPabc ≠ PaPbc
 alternatively [ab]c ≠ a[bc]

The empty container is not a zero for PUT. ø is also not a zero, since it is a convenience label and
not an object.

NO ZERO ((x_)a ø)b ≠ ((ø)e x_)a ≠ (x_)a ☞ PaE ≠ PEa ≠ a
 alternatively aE ≠ Ea ≠ a

Without a zero, there is no concept of a group-theoretic inverse operation, however there is a
computational function inverse, GET a out of b.

GaPab = b but PaGab ≠ b ≠ a

Since the same forms can be constructed by different sequences of PUT operations, the PUT
function does exhibit compositional, or temporal, invariants. In particular, the order that objects
are PUT into the same container does not matter. Independence of container contents is expressed
as commutativity over successive function compositions.

TEMPORAL COMMUTATIVITY PaPbc = PbPac alternatively a[bc] = b[ac]

Temporal commutativity is operational parallelism. Sequence of compositions is irrelevant for forms
that can be PUT into a container concurrently. However, proof using PUT functions is severely
burdened by the necessary ordering of binary arguments implicit in temporal construction. PUT
makes the cost of ordering of function arguments explicit: the advantages of parallelism are lost.36

6.4 The Functional Arithmetic of Form
We have accumulated several functional notations and their shorthand forms, including a
skeleton notation that is useful for illustrating the construction of arithmetic forms from a single
empty parens, E. Figure 6 provides a comparison of each of these notations. 

�32

 CALLING CROSSING

 parens () () = () (()) =

 annotated ((ø)a(ø)a)u = ((ø)a)u (((ø)a ø)b)u = ()u

 PUT functions PPøaPPøaU = PPøaU PPPøaPøbU = U

 PUT with E PEaPEaU = PEaU PPEaEbU = U

 abbreviated Ea[EaU] = EaU [EaEb]U = U

 abbreviated labels a[aU] = aU [ab]U = U

 abstracted E only E[EU] = EU [EE]U = U

Figure 6: LoF Arithmetic as PUT Functions

7. Distinction Networks
A distinction network (dnet) is a collection of nodes, or as we have been calling them here,
containers, and a collection of directional links connecting pairs of nodes. The distinguished
direction of connectivity could be called either contains or is-contained-by, depending upon our
choice of perspective. Since a link is an ordered pair, we can consider a network to be a set of
ordered pairs of nodes.

Dnets are a postsymbolic notation, a more natural iconic way to visualize containment. Basically
dnets are directed acyclic graphs with structure sharing. By considering network structure to
be a pictorial description without labelling the nodes, the presumed infrastructure of sets and
predicate calculus is not necessary. For dnets, the link between two nodes can be seen as a shared
boundary, while the nodes are the territories on either side of the boundary. The distinction
boundary itself defines the difference between contents and context. The boundary provides
context for its contents. Forms in the same context have the same boundary as their environment,
however they have no relation to each other. This leads to an important advantage of modeling
containment by network structures: networks highlight the potential for concurrent
transformations.

7.1 Structure
A form is any sub-network of a given node. All nodes are roots for their contents, although some
content nodes may have multiple roots due to structure sharing. Acyclic networks do not have
loops, modeling the idea that two containers cannot mutually contain each other. Since all forms
are contained the network is connected, the network analog of the concept of closure for string
expressions. A node with no upper links is a global container, the root of a rooted graph. A node
with no lower links is an empty container, a leaf of a rooted graph. Forms that do not share a
common root are entirely independent of one another. In the network notation, downward exiting
links have the same role as pattern-variables. They can connect to any network structure. An
open-ended downward link acts like the symbolic x_ indicating lower connectivity to at least one
node. For algebraic accuracy, every node but leaf nodes should include an exit link.37 A more
casual notation is used below, to show shapes rather than formal specifications. In general the
connectivity structure of the network is sufficient to identify a specific network uniquely.

Conversion of parens to network structure is shown below for the form ((a b)((a)(b))).

Parens are first extruded downward. Each parens is capped to construct a spatial enclosure, and
direct nesting of parens is converted into network links. At this stage, a form is represented by a

�33

rooted tree. Structure sharing combines identical labels to build a network representation. The
final circular display adds directional arrows and improves the appearance.

Here are some common examples of network structure.

Figure 7 shows the symbolic properties of containment as structural properties of networks. The
heavy bar across a link indicates that the link is not permitted. The bar serves the same role as
negation, but in a visual format. Network constraints can be implemented without an
infrastructure of sets and logic and numerics, each of which is an alternative language for
abstracting the physical structure of a dnet. The change in perspective is from symbolic
representation coupled with transformation by match-and-substitute to dynamic spatial activity
choreographed by local message passing leading to local link deletion. Communication with direct
neighbors achieves the same transformational objectives as match-and-substitute for strings, as
inference for logic, and as union and intersection for sets. The foundations of our formal
mathematics preserve conceptual and structural perspectives of a pre-computational era, and as
such have no privileged status to describe inherently formal iconic computational processes. In
particular, local concurrent message passing coupled with match-and-delete can be described by
sets of ordered pairs and by conjunctions of relations, but the operations associated with sets and
logic are not employed.

 containment label empty not content deep

 irreflexive asymmetric acyclic physicality

Figure 7: Iconic Constraints that Define Containment 

�34

root generic double multiple nested
()u ((b c d e)a)u (c)b ((x_)b (y_)c)a (((x_)c)b)a

b

a

a
b

a

c
ba

a
ab

a

a
b

c
cb

ab

c
a

u

b c d e

7.2 Flexibility
Rooted trees do not have a preferential ordering of their branches. Ordering of content nodes is
not a concept within the iconic notation, there is no structural information within the collection of
links to support such a notion. The visual notation of equal orderings below distorts the spatial
perspective in favor of showing linear permutations to be equal. The iconic display, in contrast, is
invariant under rotation in three-dimensions.

In the freedom of three dimensions, spatial transformation can be achieved by a greater diversity
of methods, including two-dimensional spatial reflection, temporal network traversal, and three-
dimensional rotation. By permitting the reader to inhabit the three-dimensional space of
representation, rotation can be expressed equivalently as the movement of the viewpoint of the
reader. Symbolic notation limits a reader’s viewpoint, so relations such as commutativity must be
expressed as a structural transformation of the representation. Iconic notation, in contrast,
incorporates the concept of viewpoint, so that commutativity does not require restructuring the
representation. Simply looking from a different perspective is sufficient.

An associative string function is also a temporal sequence of accumulation. In a network, this
accumulation over time can be represented by nodes that create additional depth in the
representation.

Spencer Brown's approach to associativity is similar to his approach to commutativity. From the
perspective of iconic patterns, grouping the contents of a container (i.e. establishing an arity)
violates the independence of those contents. Since containment itself is the iconic grouping
operation, support of binary arity would require the insertion of additional containers, in effect
the creation of two different types of container. Although depth and breadth are different
structurally, the network itself unifies these apparently different properties of string
representations. Conceptually, all nodes can be processed, traversed, and/or viewed at the same
time. Both commutativity and associativity are implementation details rather than fundamental
properties.  

�35

=
a

c
e

b
d

= =
c

e

a
d

b

e
d

a
c

b

e
d

a
c

b

7.3 The Asynchronous Arithmetic of Form
From the perspective of communication, all nodes in a dnet are continuously active and
responsive. From the perspective of computation, a dnet is a fine-grain massively parallel
processor.38 Dnet transformations are entirely local and exclusively limited to communication
between a particular content form (a directly lower node) and the environment that contains it (a
directly upper node). Messages flow in one direction only. Each node communicates only with its
direct neighbors. There is no global coordination. That is, distinction networks act like cellular
automata. In order to send messages, nodes have internal access to their upper and lower links,
and can assess when there are no links. Messages instruct a neighbor to disconnect from the
network. In the relational notation, these disconnections are represented as deletion of ordered
pairs. In iconic notation, they implement a calculus in which network pruning is the primary
operation.

Crossing and calling can be expressed as dnets using a disconnection bar to indicate the structural
changes specified by each rule.

 CALLING CROSSING BOTH CONCURRENTLY

 () () = () (()) = (() x_) =

Although asynchronous message passing is designed for algebraic reduction, it applies in a
simplified version to Crossing and Calling. As illustrated in Figure 8, both axioms condense into
one message. All nodes concurrently examine their own connectivity. Nodes that have no lower
connections send an asynchronous message to their upper connections, instructing each upper
node to disconnect itself from the network by deleting all of its connections, regardless of
connectivity. The root node of the network has no uppers to disconnect from. Effectively, the dnet
implements an algebraic operation, deleting the pattern-variable x_ that may be attached to the
container of any leaf node. In Figure 8, the example dnet is reduced to a single node in one
temporal step by three concurrent disconnect messages. 

�36

 DISCONNECTION RULE

Condition: lower links = 0
 Action: send upper nodes DISCONNECT

Condition: receive DISCONNECT
 Action: disconnect all links

example 〔 (())((())(()())) 〕=〔 () 〕

Figure 8: Asynchronous Crossing and Calling

8. Computation
Axiom systems guide the transformation of formal structure. These axioms are design choices
about how we want to think. They impose distinctions upon formal thought by constructing
partitions, by building boundaries that separate some concepts from others. It is the difference
between the equivalence classes constructed by axioms that makes available different concepts.
Axioms themselves suppress difference. Equality of form limits conceptual diversity.

Comparing the desirability of axiom systems requires not only a shared objective, but also a
familiarity with how transformation is implemented. What makes a system of transformation
axioms desirable? What motivates our choices to eliminate differences in form, to suppress
variety? The discipline of mathematics is guided by maximal abstraction, by axioms that permit
the most to be said with the least. Over a century ago, Poincaré offered this definition:
“Mathematics is the art of giving the same name to different things.”39 What kind of axioms might
achieve this goal? In A New Kind of Science Wolfram uses the programming language
Mathematica to survey many thousands of potential axiom systems, concluding that there is
nothing particularly fundamental about axiomatic logic.40 Of the thousands of possible logic
theorems, the ones that we as a culture have focused upon are not differentially interesting, at
least not from a structural viewpoint.

One possible minimality metric for identifying the quality of an axiom system might be the total
number of characters needed to express the set of axioms, but this has the severe disadvantage of
rewarding tokens that are packed with hidden meaning. Counting the number of axioms is also a
false measure, because by joining all the axioms by conjunction, we can always reduce the
multitude to a single axiom that is usually extremely awkward to use. We then immediately apply
self-transformations to that single axiom to free the more convenient versions as theorems.

�37

The most elegant collection of concepts that underlie the representation of axioms might also be
seen as desirable. Of course, humankind has yet to come to agreement on which concepts might
have greater elegance. Historically, fidelity to physical observation served as grounding, however
abstract logical and numerical systems are believed to be conceptual rather than concrete. There
are also metamathematical constraints. Axioms should be independent of one another, consistent
with one another, and complete in the sense that they can be used for what they are intended.
Finally there is the psychological perspective, axioms should be very easy to understand, both in
structure and in motive. Axioms should be intuitive. Mathematics has more or less ignored
learning theory and the human perceptual system while identifying fascinating artifacts within the
Platonic realm.41 This finesse (or negligence if you choose) is not an option when working with an
iconic notation.

Here is a LoF-like perspective. An axiomatic system is preferable when

—The concepts that underlie the representation are themselves elegant, succinct,
widely applicable, mutually supportive, and transparently clear.

— The concepts map directly onto the representation in a sensual manner, so that
seeing or reading or hearing or touching the representation elicits the concepts.

— The representation itself includes an extremely simple transformation system
(i.e. proof theory) that suppresses long proofs while still generating interesting
forms that stimulate new concepts and perceptions.

8.1 Pattern-Matching
Pattern-matching and substitution of equals is the primary algebraic mechanism for
transformation of form, so we will need to identify just what such a mechanism requires and
implies. Match-and-substitute has been foundational to mathematics since Leibniz. “Things are
the same as each other, of which one can be substituted for the other without loss of truth.”42

The capability to match forms is implicitly assumed in most mathematical systems, but it is far
from trivial computationally. Substitution is usually hidden in the equal sign and in the cognitive
deliberations of a supra-computational agent that we might call the Mathematician. From the
algorithmic perspective, however, we must specify precisely what a pattern-matching engine
should and can do. We can readily pass off the task of finding equal forms (i.e. using the equal
sign) to the computer. Computers look for the same data structures in different parts of memory.
Structure sharing is compiling identical structures into the same memory location. With a
declarative programming language, we need only to decide upon which axioms (equalities) we
wish to assert, the computer will take care of all the work to find those patterns and to apply
substitutions. We do need to provide guidance about the context of symbolic substitutions for
cases in which

— a specific transformation matches more than once
— the same transformation matches different parts of the same subform
— different transformations match parts of the same subform
— the result of a transformation again matches an available transformation
— a transformation might be beneficially applied in two different directions.

�38

Symbolic transformation rules must include both positive and negative conditions for matching.
Positive conditions specify the structures that must be present, negative conditions specify
structures that must not be present. In contrast, the iconic description of both rules and forms
uses empty space (i.e. non-representation) to specify negative conditions. Our final task then is to
look at the diversity of results a computer might generate to find whatever we may be interested
in. Often we use the computer to sort and filter its own results.

8.2 Iconic and Symbolic Calculi
Figure 9 shows the axioms of LoF in iconic parens notation. Spencer Brown identifies two axioms
for the arithmetic and two axioms for the algebra.43 His two axioms for the algebra of distinctions
are historically grounded, raising parallels to Huntington's group-theoretic axioms in 1930s.
Spencer Brown’s Position and Transposition align with Huntington’s Complement and
Distribution. The figure also shows an alternative set of three axioms that are particularly
convenient for computation. These three computational axioms are void-based, they implement
transformation solely by construction and deletion of irrelevant structure. Spencer Brown’s
Transposition, in contrast, rearranges structure and depends upon matching pattern variables in
non-nested locations.

initials of the arithmetic
CROSSING (()) =
CALLING () () = ()

initials of the algebra
POSITION (a (a)) =
TRANSPOSITION ((a b)(a c)) = a ((b)(c))

computational initials
DOMINION a () = ()
INVOLUTION ((a)) = a
PERVASION a (a b) = a (b)

Figure 9: The Iconic Transformation Rules of LoF

In the following displays, the LoF transformation rules are each presented for comparison in five
different notations from previous sections: parens (introduced in Section 1.2), annotated parens
(Section 4.1), sets of ordered pairs (Section 5.4), PUT functions (Section 6.4), and distinction
networks (Section 7.3). As is the case for any equational system, rules can be applied in either
direction, as construction or as deletion. The principle of void-equivalence suggests that
structures that can be omitted should be omitted since void-equivalent forms do not contribute to
necessary structure or to meaning.There is no concept of implication; deduction occurs through
pattern-matching and substitution.

�39

The ordered pair descriptions are stacked vertically to emphasize both the pairs that change and
the explicit catalytic pairs that are necessary as contextual triggers but themselves do not change.
Only the annotated parens form shows the incidental structure x_ within each container. The
variables in each pattern can be interpreted equally as labels standing in place of a single form or
as pattern-variables standing in place of any number of forms. The former interpretation
corresponds to a sequential implementation for which variables are operated upon one-at-a-time.
The latter pattern-variable interpretation corresponds to a parallel implementation in which all
forms within a particular container are operated upon concurrently. The pattern-variable
interpretation leads to a more elegant set of axioms that are presented in Section 9. Finally the
dnet representation uses the disconnection bar to indicate the available transformation.

Axioms of the Arithmetic of Distinction
In each of the five systems of representation the axioms of the LoF arithmetic, Crossing and
Calling, give permission to reduce forms via deletion to either a mark or to the absence of a mark.

Axioms of the Algebra
In Spencer Brown’s axioms for the LoF algebra the container of the innermost replica in Position
must otherwise be empty. Without this complete matching, Position takes the shape of the
Pervasion, one of the computational rules below. Position is a special case of Pervasion for which
the innermost x_ is replaced by ø. The functional form shows that Position is a generalization of
Crossing. Position strictly enforces the physicality constraint. In a void-based computational

�40

CROSSING

 parens (()) = distinction network

 annotated (((ø)a ø)b x_)u = (x_)u

 pairs {(U,b),(b,a),(b,ø),(a,ø)}
 = { }

 puts [EE]U = U

CALLING

 parens () () = () distinction network

 annotated ((ø)a (ø)a x_)u = ((ø)a x_)u

 pairs {(U,a),(U,a),(a,ø),(a,ø)}
 = {(U,a), (a,ø) }

 puts E[EU] = EU

system, one way to assert a constraint is to make violation of that constraint void-equivalent.
What began as an intuitive notion that objects cannot be contained by two different containers, is
violated by a symbolic notation that permits free replication of labels, and is then corrected by
LoF rules that assert these forms to be void-equivalent.

Instead of deleting irrelevant structure, Transposition rearranges structure. In all notational
styles, the descriptive complexity of rearrangement is apparent. Transposition is a theorem of the
void-based computational axioms of LoF that follow. Many other generalizations of Transposition
are available. For example there could be multiple forms containing a on the left-hand-side,
leading to Broad Transposition.44

BROAD TRANSPOSITION ((a b)(a c)(a d)…) = a ((b)(c)(d)…)  

�41

=
a

a

TRANSPOSITION

 parens ((a b)(a c)) = a ((b)(c))

 annotated (((a y_)f(a z_)g ø)h x_)u = (a ((y_)f(z_)g ø)h x_)u

 pairs { (h,f),(h,g),(h,ø),(f,a),(g,a)}
 = {(U,a),(h,f),(h,g),(h,ø) }

 puts [c[aE]][[b[aE]]E] = [[cE][[bE]E]][aU]

 distinction network

POSITION

 parens (a (a)) = distinction network

 annotated ((a (a ø)b z_)c x_)u = (x_)u

 pairs {(U,c),(c,a),(c,b),(b,a),(b,ø)}
 = { }

 puts [aE][aE] = U a

Computational Axioms
Dominion, Involution and Pervasion define a computational basis for the algebra of LoF. These
three void-based rules simplify forms solely through deletion and construction of structure. In
Laws of Form, Dominion is named Integration, Involution is Reflexion, and Pervasion is
Generation. Different names are introduced here to emphasize that this basis is a different ground
upon which to build the proof theory of the algebra of LoF. Dominion generalizes Calling while
Involution generalizes Crossing. The computational axioms are therefore tightly connected to the
LoF arithmetic. Each of the computational rules employs pattern-variables. The explicit form a is
generalized to an incidental pattern-variable a_ in Dominion and in Involution. Involution
addresses double boundaries only, not the structure inside them. Pervasion formalizes the
concept of semipermeable boundaries. It’s pattern-variable a_ is essential, to be matched and
eliminated.  

�42

DOMINION

 parens a () = () distinction network

 annotated ((ø)b a_)u = ((ø)b)u

 pairs {(U,a_),(U,b),(b,ø)}
 = { (U,b),(b,ø)}

 puts a_[EU] = EU

a

INVOLUTION

 parens ((a)) = a distinction network

 annotated (((a_)b ø)c x_)u = (x_ a_)u

 pairs {(U,c),(c,ø),(c,b),(b,a_)}
 = { (U,a_)}

 puts [a_b]E = a_ a

PERVASION

 parens a (a b) = a (b) distinction network

 annotated (a_ (a_ y_)f x_)u = (a_ (y_)f x_)u

 pairs {(U,a_),(U,f),(f,a_)}
 = {(U,a_),(U,f) }

 puts [a_[bE]][a_U] = [bE][a_U]
a

There is one remaining refinement to Pervasion. The pervaded replica a_ in the original Shallow
Pervasion is nested one level deeper than its outer matching pattern. The textual notation has not
been adapted for transformation that crosses multiple depths. Deep Pervasion extends the depth
of pattern matching to replicas at any deeper level of nesting. Succinctly, parens boundaries are
semipermeable to replicas. We’ll introduce a special type of boundary, { }, to represent any depth
(including zero depth), just like the ellipsis … represents any breadth. The curly brace { }
extends Pervasion to any depth of nesting. Similarly, the link-ellipsis in the dnet notation indicates
any depth of network nesting, independent of intervening branches and boundaries. Since
ordered pairs and PUTs are textual notations, neither accommodates a notation for arbitrary
depth of nesting. N has been inserted into both of these notations as a default substitute for depth.

Many of the demonstrations in Laws of Form presume a sequential stepwise approach across depth
of nesting. Spencer Brown demonstrated Deep Pervasion as a series of incremental steps, each
step descending one level deeper into a form.45

a (b (a c))
a (a b (a c))
a (a b (c))
a (b (c))

This stepwise limitation is notational rather than conceptual. We can characterize Pervasion directly
as a deep rule by asserting that all boundaries are semipermeable to forms on the outside. Shallower
forms pervade all inward depths, including of course no depth.46 A semipermeable boundary is the
primary structural characteristic that distinguishes the interpretation of parens forms as logic.

9. Single Variable Calculus
The LoF computational algebra is a collection of three equations that assert void-equivalence of
particular structural circumstances. In Section 8 these three rules are stated using variables to
explicitly identify structure that is incidental to each rule. In a notation that makes incidental
structure implicit, each rule can be reduced to address one variable only. The one variable calculus
treats non-participating structure as truly non-participating, even in the notation. If a form is not
transformed, it need not be recorded. From the iconic perspective, incidental structure is
background and therefore does not need a label. To manage potential ambiguity, the null token is
used to indicate a necessary absence of incidental, non-labelled content. 

�43

DEEP PERVASION

 parens a {a b} = a {b} distinction network

 annotated (a_ {a_ y_}n x_)u = (a_ {y_}n x_)u

 pairs {(U,a_),(U,N),(N,a_)}
 = {(U,a_),(U,N) }

 puts [a_[bN]][a_U] = [bN][a_U]
a

 SECTION 8 SECTION 9
IMPLICIT INCIDENTAL STRUCTURE (x_)a is now ()a
EXPLICIT ABSENCE OF STRUCTURE ()a is now (ø)a

The computational axioms are shown in Figure 10 in the new single-variable notation. The figure
includes three notational varieties for each axiom. The first variety is the original parens notation,
the second variety is the annotated parens notation using the single variable convention of
showing only necessary absence. The third equation shows this new notation without annotations.47

CROSSING

parens ((())) = ()
annotated ø (((ø)a ø)b)c = ()c
explicit ø (((ø) ø)) = ()

CALLING

parens (() ()) = (())

annotated ø (()a ()b)c = (()a)c
explicit ø ((ø) (ø)) = ((ø))

DOMINION

parens (() A) = (())
annotated ø ((ø)a)b = ((ø)a ø)b
explicit ø ((ø)) = ((ø) ø)

INVOLUTION

parens (((A)) B) = (A B)

annotated ø ((()a ø)b)c = ()c
explicit ø ((() ø)) = ()

DEEP PERVASION

parens (A {A B}) = (A { B})

annotated ø (a_ {a_ }b)c = (a_ { }b)c
explicit ø (a_ {a_ }) = (a_ { })

Figure 10: Axioms of the Single Variable Algebra

Dominion does not require specific variables. It asserts that when an outer parens contains an
empty parens all other contents are void-equivalent, leaving a necessary null constant ø.
Involution addresses only double parens, and also does not require specific variables. It declares
all double parens to be void-equivalent. Deep Pervasion then is the only rule that requires
matching a pattern-variable. It asserts that replicas of any form found nested at a deeper level are
void-equivalent. Here, the form to be matched is identified by the pattern-variable a_. 

�44

Figure 11 shows the single variable calculus of indications in three notations: annotated parens,
ordered pairs, and PUT functions. Here each notation is adapted for brevity to use implicit
incidental structure. Any container that does not explicitly include a null token may contain any
other contents. The variable a_ in Deep Pervasion is a pattern-variable.

 ANNOTATED ☞ ORDERED PAIRS ☞ PUTS

DOMINION
 ((ø)a)b {(b,a),(a,ø) } [øa] b
 =((ø)a ø)b ={(b,a),(a,ø),(b,ø)} =[øa][øb]

INVOLUTION
 ((()a ø)b)c {(c,b),(b,a),(b,ø)} [a[øb]]c
 =()c ={ } = c

DEEP PERVASION
 (a_{a_}n)b {(b,a_),(b,n),(n,a_)} [a_n][a_c]
 =(a_{ }n)b ={(b,a_),(b,n) } = n [a_c]

Figure 11: Notations for the Computational Axioms

The single variable calculus is extremely efficient to implement within a software pattern-matching
language. Using the dnet representation, the three axioms can be implemented in parallel. The
possible structural complexity of logic forms, of course, still remains. If this were not the case,
then LoF would have solved the most important outstanding problem in computation, P =?= NP.
The satisfiability problem is to determine whether or not an arbitrary expression in propositional
calculus is a tautology. The question is: just how much effort should it take to identify a tautology,
polynomial (P) or exponential time (NP)? With the single variable calculus, complexity resides
solely in replicated tokens that occur in different contexts. The equation that most succinctly
illustrates this problem is precisely Spencer Brown’s Transposition axiom.48

Exponential effort can be characterized as making a guess about which transformation to apply,
with the possibility that the guess may need to be changed, in the process requiring backtracking.
Although Transposition is a theorem that can be demonstrated from the computational initials,
deciding which forms to transpose can be exponentially complex. For example, it is possible that
only one of the choices below will lead to easily determining if a more complicated form
containing (a b)(a c)(b c) is a tautology.

(a b)(a c)(b c) ?=> (a ((b)(c))) (b c)
 ?=> (b ((a)(c))) (a c)
 ?=> (c ((a)(b))) (a b)

I have found no indication that LoF techniques can answer the satisfiability question. LoF offers
a significant computational improvement in both space and time, but not a theoretical breakthrough.
There is however a conceptual breakthrough, a new mental model for logic and for rationality. 

�45

10. Innovation
Since propositional logic can be expressed by each of the structural approaches considered
herein, Spencer Brown has guided us to several different ways to think about and explore the
logical foundations of mathematics and computation. What is clear is that simple logic, as
expressed in symbolic form, is not that simple, nor is it elegant. It takes a thorough exploration to
separate our symbolic heritage from Spencer Brown’s iconic heresy, and to gain appreciation of
the deeper contributions of Spencer Brown’s innovations.

Logical proof, when expressed iconically, is successive and parallel deletion of void-equivalent forms.
Complexity enters only as the efficiency of locating those deletions.

As is characteristic of the discipline of mathematics, Spencer Brown’s work can be cast within the
framework of existing mathematical tools, and it can also be seen to subsume those tools. The
LoF axioms involve deletion and construction of images, rather than rearrangement of strings.
Logical deduction currently rests upon accumulation of facts, rearrangement of collections of
facts, and strategic planning to assemble and rearrange facts to arrive at conclusions. The
techniques of modus ponens, disjunctive syllogism, reductio ad absurdum, etc. are ancient
artifacts that still drive the organization of logical proof. None are particularly relevant to the
direct iconic formulation of logic. Rational thought might instead be seen as selective forgetting of
irrelevancies rather than as the accumulation and correlation of potentially relevant facts. Spencer
Brown’s point that associativity, commutativity, and arity are not central to the understanding of
logic comes also with a more powerful frame of mind. It does not matter how many people share a
room, nor is there any prerequisite ordering or grouping of those people. Here logical thinking is
freed from linear structure of text and placed firmly within spatial visualization of image.

Symbolic expressions cannot do justice to iconic concepts. One insight is that structure, in both
breadth and depth, should be apparent rather than abstracted. We have traced herein the various
attempts to represent containment structure in symbolic terms. These include

— label replication,
— set membership,
— argument positioning,
— logical conjunction, and
— function nesting.

Only network linking appears satisfactory as a model of containment, primarily because
networks, like LoF crosses, are iconic. We have not abandoned the algebraization of structure,
LoF is algebraic. What Spencer Brown did was to introduce a new type of representation (spatial
containment forms) into our well-known algebraic infrastructure, a change that has exposed
many of the assumptions embedded in a string-based model of rigor. In the process he created a
formal system that is not particularly group theoretic, but that is extremely relevant to
computational processes. Although Spencer Brown’s treatment of steps during a demonstration is
pre-computational, somewhat inconsistent with his iconic cross notation, LoF forms are
inherently both parallel and recursive.

�46

The Appendix includes proof of a classical cornerstone of deductive reasoning, modus ponens,
using four variants of the computational axioms of LoF: parens, ordered pairs, PUT functions, and
distinction networks. Parens reduction uses match-and-substitute deletions on iconic containers
to convert the LoF form of modus ponens into the form of TRUE. Ordered pairs and PUT functions
use match-and-substitute on string representations. The dnet proof shows an iconic approach that
includes asynchronous network pruning. All four proofs show the same transformation steps and
all identify the matching process as well as the substitutions that are facilitated. Only the three
computational axioms of LoF are employed, with no ancillary theorems.

We have not discussed many additional issues implicated by the conversion of an iconic
representation of containment into symbolic text. Modeling features that are not sufficiently
examined in this article include deep rules (rules that call upon the concept of pervasion),
inherent parallelism, structure sharing, iconic proof techniques, void-equivalent catalytic forms,
void-based programming languages, logic optimization, the impact of a unary value system upon
classical logic, the reconstruction of the arithmetic of numbers based on Spencer Brown’s and
Kauffman’s iconic techniques, and the many spatial and experiential languages and variants of
parens forms. Reports exploring several of these topics are online at http://iconicmath.com/

My personal understanding of LoF has continuously evolved. I’m probably one of a few people
who have had the privilege to be fully employed developing LoF applications for over two
decades. When I look back over prior work I can see miscomprehension, oversimplification,
projection, and struggle to step far enough away from what our culture teaches to be able to see
LoF with fresh eyes. In particular my work has focussed on computational implementations, free
of infinities, imaginary forms and deep philosophy. I’ve taken roads, often over years, that I
currently see as misinterpretation of Spencer Brown’s insights. There has always been an
expanding frontier of discovery and exploration, replete with confusion, technical error and
multiple revision, that has lead to a set of beliefs about Spencer Brown’s work that are at first
glance not explicitly delineated by Spencer Brown. A central insight is that our current
mathematical foundations are far too complex. Rationality, at its core, is more about making
distinctions and ignoring irrelevancy than it is about truth, conjunction, disjunction, negation, and
implication. The LoF formalism provides a conceptual infrastructure for logic that does not
include the binary choice of TRUE or FALSE, it does not include implication, and perhaps most
surprising, it does not include the concept of negation. Value and relevance are determined by the
context and the content of nested distinctions. Propositional logic incorporates a conceptual
diversity thousands of years old that obscures what Laws of Form makes clear: there is only
difference. Rational thought is not reliant upon dualistic choices such as true/false, good/bad, us/
them and 1/0. We can thank Spencer Brown for showing that logical clarity comes from knowing
where we stand (within rather than under) while not making something out of nothing. 

�47

In summary, these are some of the sound-bites and bumper-stickers that have emerged.

ELEGANCE
— only one concept, distinction
— only one relation, containment
— only one value, existence
— void has no properties
— void-equivalent forms are illusions

STRUCTURE
— iconic not symbolic
— containers are environments
— we are within the form
— as above, so below
— object/process unity
— no syntax/semantics barrier
— independence of contents

PROCESS
— replication is not free
— deletion rather than rearrangement
— parallel as well as sequential
— no global coordination
— logic is semipermeable distinction
— implementation is a necessary ground
— counting isn’t relevant.

�48

Appendix: Proof of Modus Ponens
This appendix demonstrates the tautological structure of the logical inference rule of modus ponens
using four notations: parens, ordered pairs, PUT functions, and dnets. Modus ponens is first
transcribed into parens using the many-to-one map from logic to parens shown in Figure 12. The
figure also shows an interpretation of the computational axioms as elementary logic.

BOOLEAN EXPRESSION ☞ PARENS FORM

 TRUE ()
FALSE
A a
NOT A (a)
A OR B a b
A AND B ((a)(b))
IF A THEN B (a) b
A NOR B (a b)

 COMPUTATIONAL AXIOMS

 A OR TRUE = TRUE a () = ()
 NOT(NOT A) = A ((a)) = a
 IF (A OR B) THEN A = IF B THEN A a (a b) = a (b)

Figure 12: The ☞ Map from Logic to Parens

When applying the computational axioms, tautologies reduce to an empty container which is
interpreted as TRUE. Contradictions are deleted, relegated to nonexistence. Labels that remain
after reduction support a semi-minimal logical form, as defined by an optimization criteria.
Essentially, variables that remain are indeterminate in value. Boolean minimization requires
several additional techniques that have not been discussed here. Absolute minimal forms are of
course exponentially difficult to determine.

Here is modus ponens. Capital letters are used for logical variables and Quine dots for grouping.

MODUS PONENS P and . P implies Q : implies Q ☞ (((P)((P) Q))) Q

Modus ponens is quite general, it is intended to apply to simple propositions, to arbitrary
formulas and sentences, and to arbitrary collections of formulas, all represented herein by
pattern-variables as capital letters. The distinction between propositions, formulas, and sets of
formulas is necessary within predicate calculus due to notational restrictions imposed upon the
linear model of deduction. Pattern-variables are generic, combining the three levels of classical
complexity of structure. From the perspective of classical logic, these articulations have been
intimately involved in the definition and growth of logical structure and logical thought

�49

throughout the twentieth century. From the perspective of iconic structure, these articulations are
notational artifacts.

Parens
The parens form of modus ponens is first reduced using the LoF computational axioms. Below,
matching is indicated by a slash mark, so that a/B reads that pattern-variable a has been matched
(technically, bound) to structure B within a form. Then an appropriate transformation rule from
Figure 12 that incorporates the variable a is applied to generate a new reduced form.

(((P) ((P) Q))) Q initial form
((a)) match a/(P)((P)Q)
 (P) ((P) Q) Q involution ((a))=a
 (a) a match a/(P) Q, b/ø
 (P) () Q pervasion a(a b)=a(b)
 () a match a/(P) Q
 () dominion a()=()

result () ☞ TRUE

Ordered Pairs
The intention of the following proof using ordered pairs is to demonstrate that predicate calculus
relations can be used for proof driven by LoF axioms as well as by Gentzen-type and by
resolution inference systems. Ordered pairs that are deleted by rule application are marked by º.
Empty forms are identified dynamically by failure to find other contents. The ordered pairs proof
can be significantly more efficient if structure sharing is incorporated to strengthen what are
essentially parallel operations.

ANNOTATED PARENS 〔 (((P)3 ((P)5 Q)4)2)1 Q 〕u

ORDERED PAIRS {(u,1),(u,Q),(1,2),(2,3),(2,4),(3,P),(4,5),(4,Q),(5,P)}

{(u,1),(u,Q),(1,2),(2,3),(2,4),(3,P),(4,5),(4,Q),(5,P)} initial form
 (U,c) (c,b) (b,a) (b,a) (c,ø) match U/u,c/1,b/2,a/3 4
{ º (u,Q), º (u,3),(u,4),(3,P),(4,5),(4,Q),(5,P)} º involution
 (U,a) (U,b) (b,a) match U/u,a/Q,b/4
{ (u,Q), (u,3),(u,4),(3,P),(4,5), º (5,P)} pervasion
 (U,c) (c,b) (b,a) (c,ø) match U/u,c/4,b/5,a/P
{ (u,Q), (u,3), º (3,P), º (u,P)} º involution
 (U,b) (b,a) (U,a) match U/u,b/3,a/P
{ (u,Q), (u,3), º (u,P)} pervasion
 (U,a) (U,b) (U,a) (b,ø) match U/u,b/3,a/P Q
{ º (u,3), º (3,ø)} dominion
 result 〔(ø)3〕 ☞ TRUE

�50

PUT Functions
The next proof uses match-and-substitute steps on repeated function compositions. Since this
mixes two essentially different styles (descriptive patterns and functional actions) the proof is
both awkward and tricky. Pattern-matching requires rearrangement of function compositions,
losing the advantage of non-replicated labels to simplify temporal commutativity. The PUT patterns
for each axiom are shown to the right.

ANNOTATED PARENS 〔 (((r)3 ((r)5 s)4)2 ø)1 s〕u

PUT FUNCTIONS PPPPrE3PPPrE5PsE4E2E1PsEu

PPPPrE3PPPrE5PsE4E2E1PsEu initial form

 PPa b E match a/PrE3PPPrE5PsE4, b/E2, E/E1

P PrE3PPPrE5PsE4 PsEu involution PPabE=a

P a PPa b c match a/PrE3, b/PsE4, c/PsEu

P PrE3P PsE4 PsEu pervasion PaPPabc=PaPbc

 P a Pbc match a/PsE4, b/s, c/Eu

P PrE3P s PPsE4Eu rearrange PaPbc=PbPac

 P a PPab c match a/s, b/E4, c/Eu

P PrE3P s P E4Eu pervasion PaPPabc=PaPbc

 P a P E c match a/s, E/E4, c/Eu

P PrE3 P E4Eu dominion PaPEc=PEc

P a P E c match a/PrE3, E/E4, c/Eu

 P E4Eu dominion PaPEc=PEc

 result 〔(ø)4〕 ☞ TRUE

Distinction Networks
The dnet parallel proof is included to illustrate multiple reductions occurring dynamically
throughout the dnet. Nodes 3 and 5 first share structure, which then allows three concurrent
deletions of connectivity (via Involution and Pervasion). Dominion then completes the proof. As
with the other proofs, the remaining empty node is interpreted as TRUE. 

�51

Endnotes
1. William Bricken: Hi Folks. I’m best contacted at william@iconicmath.com. I work at Lake
Washington Institute of Technology in Seattle as a professor of mathematics.

2. Conventional math, until very recently, is symbolic: Recently developed fields such as
cellular automata, fractals, knot theory, and category theory incorporate visual iconic notations.

3. a negotiated process of exclusion, reconceptualization, and generalization: Lakatos (1976),
Proofs and Refutations.

4. Distinction is perfect continence: Spencer Brown (1969), Laws of Form, p.1.

5. container boundaries must be impermeable: LoF distinctions, when interpreted for logic, are
semipermeable; forms on the outside are arbitrarily also on the inside. See Section 8.

6. the difference between a written mark and reading that mark: The edge of this page is a
distinction, the boundary between our physical reality and the representational images contained
by the page. We default to viewing notation from the outside, by textual convention. The
experience of being on the “inside” is that of not perceiving the frame, of transferring
consciousness from awareness of our bodies to awareness of the meaning of the words we read.
Immersive virtual reality is a recent technology that facilitates viewing symbolism from the inside.
Perspective imposed by the Reader makes crossing from outside to inside different than crossing
from inside to outside.

7. Spencer Brown’s concept of an unwritten cross: Laws of Form, p.7.

8. common to every expression in the calculus of indications and so need not be written: Laws
of Form, p.43.

9. contain what is on its inside and not to contain what is not on its inside: Laws of Form, p.6-7.

10. an ability to bond forms together in a relation: I made this error in much of my work from a
couple of decades ago, calling mutual containment the sharing relation. It remains the dominant
misconception in published commentary on Laws of Form today.

11. Both Void and Existence seem to incorporate the logical idea of NOT: Negation rests within
the duality of classical logic. It requires us to take a side, exclusively one or the other. Within the
form of the distinction, (), we have access both to the outside and to the inside. LoF boundaries
are semipermeable, what is inside is contained however what is outside can freely access the inside.
Logical negation is impermeable, that which is TRUE does not necessarily have access to that which
is FALSE.

12. Eliminating these concepts is our major challenge: This exploration is computational rather
than philosophical, and does not incorporate the deeper ideas about void, existence, and identity
explored by philosophers of mathematics such as Badiou and Rotman.

13. notation for logic (both propositional and predicate logic) at the turn of the twentieth
century: For example, see Kauffman (2001), The Mathematics of Charles Sanders Peirce;
Roberts (1973), The Existential Graphs of Charles S. Peirce; and Bricken (2006), Boundary Logic
and Alpha Existential Graphs.

14. Spencer Brown’s insight is that distinction is “a form of closure”: Laws of Form, p.77.

�52

mailto:william@iconicmath.com

15. distinction is necessarily cognitive, that “difference is an idea”: Bateson (1972), Steps to an
Ecology of Mind, p.481.

16. no things, forces, or impacts but only differences and ideas: Steps to an Ecology of Mind, p.
271. Emphasis in original

17. Here is a direct map from variary: A variary function applies to any number of arguments,
including none. To accommodate this idea, standard function theory constructs a one argument
function that takes a set of arguments as input.

18. Calling acknowledges that the ground object is unique: Analogously, we do not label
multiple occurrences of a logical ground with different subscripts. We do not write TRUE1 OR TRUE2.

19. implementation of this rule, of course, will differ depending on hardware capabilities: Yes,
there are significant questions about the possible interactions of rules. Bricken (1995), Distinction
Networks.

20. function application itself is a method for generating labels: 21000 is the name of a cardinal
number that we would not care to identify explicitly. Even the familiar 1/2 (one half) is both the
name of a fraction and the binary operation to achieve that fraction (divide 1 by 2).

21. belong to the graph category of directed acyclic networks: A directed acyclic graph has no
cycles, at least one source node with no inputs and at least one sink node with no outputs. A
rooted graph has only one source node.

22. the cost of degrading LoF into a symbolic notation: These apparently benign extensions
have contributed significantly to a general misunderstanding of LoF.

23. the conventional definition of well-formed parenthesis expressions: For example, Kleene
(1952), Introduction to Meta-mathematics, p. 23.

24. ordered pairs can stand in place of any symbolic relation: The symbolic definition of an
ordered pair specifies two sets, a singleton set to isolate the first label of a pair, and a doubleton
set to isolate the second label. (a,b) =def= {{a},{a,b}}

25. deletion and creation of replicas within a multiset of ordered pairs: It is possible to
eliminate the duplicates in Calling and thus avoid multisets by providing each empty container
with a different label. However there is only one empty container, so that (ø)a = (ø)b = E. This is
a case of the occurrence of different labels for the same form, similar to Morning Star and Evening
Star which both identify the planet Venus. Once a form is inserted into an empty container,
however, it becomes necessary to label that container.

26. necessary to define the meaning of containment: We are developing a non-dualistic version
of logic that makes an interpretation of negation available when transcribing to symbolic
expressions while negation itself is not conceptually necessary, having been relegated to
nonexistence.

27. excluded from the codomain of the contains relation: For the interim, symbolic logic
notation is mixed with boundary notation in order to trace the propagation of logic concepts
across notations.

�53

28. The special token is defined, however, as not existing: Unlike symbolic expressions, iconic
forms such as the double-parens are meaningless and thus immediately deletable into non-
existence. The idea of forms that are irrelevant and therefore expendable contributes significantly
to efficiency of iconic computation.

29. asymmetric: Notice that we are eliminating the logical concept of implication in favor of the
Boolean concept of conjunction.

30. physicality: The dot in the hybrid parens notation is Quine’s notation for grouping, handy
when parentheses have a different use. More dots mean greater scope.

31. a variety that, as might be expected, is not widely-studied: PUT however is an essential
function within computational systems and computer languages. It is the instruction that puts
data into a database. It’s computational inverse is GET.

32. the uniqueness constraint for functions is also satisfied: There is a slight complexity. If a
null token is repeatedly PUT into a container, replicas cannot accumulate: PøPøa = Pøa = E. The
introduction of a token or representation for nothing inevitably leads to difficulties. It is not
appropriate to assert øø = ø since absence in general cannot be replicated. Tokens that stand in
place of absence undermine the semantics of their referent. Absence has no location, no
cardinality, and no participation in or response to operations.

33. each limited to its own dimension of descriptive existence: The tradeoff between
computational space and time is a dominant theme in theoretical computer science.

34. into dynamic nesting of non-replicated function application labels: It is not just
coincidence that functions are represented by labelled boundaries.

35. skeleton E only: In Figure 5 the skeleton E only framework describes the construction of the
example form in the following steps. The dynamic process descriptions are on the left and the
static object descriptions are on the right.

 EE ☞ (())
 [EE][EE] ☞ ((()) ())
[[EE][EE]][EE] ☞ (((()) ()) ())

36. the advantages of parallelism are lost: Within symbolic notation there is no free lunch. We
must pay either replication of labels or temporal sequencing to compensate for a one-dimensional
medium of expression.

37. every node but leaf nodes should include an exit link: Alternatively, exit links can be
implicit and nodes that necessarily have no other exit links can be explicitly marked using the ø
convention. This notational finesse is used in Section 9 to specify an elegant one variable calculus
of form.

38. a dnet is a fine-grain massively parallel processor: Dnets have been used extensively to
model and to optimize silicon circuitry. The first public demonstration of parallel logic
computation using dnets was on a 16-node Intel Hypercube at IJCAI’87. Bricken & Gullichsen
(1989), An Introduction to Boundary Logic with the Losp Deductive Engine.

�54

39. Mathematics is the art of giving the same name to different things: Poincaré (1908), The
Future of Mathematics Science and Méthode.

40. there is nothing particularly fundamental about axiomatic logic: Wolfram (2002), A New
Kind of Science, pp. 714–846.

41. while identifying fascinating artifacts within the Platonic realm: I have adopted the
modern perspective that math is a human activity, therefore it should at least reflect human
physiology.

42. which one can be substituted for the other without loss of truth: Frege (1884), The
Foundations of Arithmetic. p. 76. quoting Leibniz.

43. two axioms for the arithmetic and two axioms for the algebra: Spencer Brown uses the
word initials to identify what we would conventionally call axioms.

44. multiple forms containing a on the left-hand-side, leading to Broad Transposition: Laws of
Form, p.38.

45. each step descending one level deeper into a form: Laws of Form, pp. 39–40.

46. forms pervade all inward depths, including of course no depth: Pervasion has its roots in
the alchemist’s creed: As above, so below. Note that the background void pervades all forms.
Pervasion is better visualized as pervasive presence of each form throughout inner depths of
nesting, as if the parens inwardly facing boundaries are void-equivalent and do not exist.

When parens are interpreted as functions, Deep Pervasion reaches across function boundaries to
change the arguments of nested function applications. E.g., f[a,f[b,f[a,c]] = f[a,f[b,f[c]]].
Incidentally, the semipermeability of distinction boundaries is a property only of the logical
interpretation. When parens forms are used to axiomatize numbers, parens boundaries are
impermeable.

47. The third equation shows this new notation without annotations: The explicit ø
computational axioms cannot be transcribed into the notation of symbolic logic since implicit non-
representation of incidental structure is not possible in symbolic forms.

48. most succinctly illustrates this problem is precisely Spencer Brown’s Transposition
axiom: Bricken (2002), Computational Complexity and Boundary Logic.

�55

References
Badiou, A. (2008). Number and Numbers. Cambridge, UK:Polity.
Bateson, G. (1972). Steps to an Ecology of Mind. New York, NY:Ballantine.
Bateson, G. (1991). A Sacred Unity. New York, NY:HarperCollins.
Bricken, W. (1992). Spatial Representation of Elementary Algebra.1992 IEEE Workshop on Visual Languages,

Seattle, WA. Los Alamitos, CA:IEEE Computer Society Press. p.56-62. Also available at
http://iconicmath.com/algebra/spatial

Bricken, W. (1995). Distinction Networks. In I. Wachsmuth, C.R. Rollinger & W. Brauer (Eds.), KI-95:
Advances in Artificial Intelligence. Berlin:Springer. p.35-48. Also available at
http://wbricken.com/htmls/01bm/0105arch/010501dnets.html

Bricken, W. (2002). Computational Complexity and Boundary Logic. Available at
http://iconicmath.com/logic/boundary

Bricken, W. (2006). Boundary Logic and Alpha Existential Graphs. Available at
http://iconicmath.com/logic/boundary

Bricken, W. (2006). The Mathematics of Boundaries: A Beginning. In D. Barker-Plummer et al (Eds.).
Diagrams 2006, LNAI 4045, Berlin:Springer. p.70-72. Also available at
http://wbricken.com/htmls/01bm/01-math.html

Bricken, W. (2006). Syntactic Variety in Boundary Logic. In D. Barker-Plummer et al (Eds.). Diagrams
2006, LNAI 4045, Berlin:Springer. p.73-87. Also available at
http://wbricken.com/htmls/01bm/0103notate/010301nonsymb.html

Bricken, W. & Gullichsen, E. (1989). An Introduction to Boundary Logic with the Losp Deductive
Engine. Future Computing Systems 2(4). p.1-77.

Bricken, W. & Nelson, P. (1986). Pure LISP as a Network of Systems. Proceedings of the Second Kansas
Conference: Knowledge-Based Software Development, Kansas State University.

Frege, G. (1884). The Foundations of Arithmetic. Evanston, IL:Northwestern University Press. Also in J.
vanHeijenoort (Ed.) (1967) From Frege to Godel. Cambridge, MA:Harvard U. Press.

Heylighen, F. & Joslyn, C. (2001). Cybernetics and Second-Order Cybernetics. In R.A. Meyers (Ed.),
Encyclopedia of Physical Science & Technology (3rd ed.). Oxford, UK:Elsevier.

James, J. & Bricken, W. (1992). A Boundary Notation for Visual Mathematics. 1992 IEEE Workshop on
Visual Languages, Seattle, WA. Los Alamitos, CA:IEEE Computer Society Press. p.267-269.

Kauffman, L. (2001). The Mathematics of Charles Sanders Peirce. Cybernetics and Human Knowing, 8(1-2),
p.79-100.

Kleene, S.C. (1952). Introduction to Meta-mathematics. New York, NY:North-Holland.
Lakatos, I. (1976). Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge, UK:Cambridge U.

Press.
Poincaré, H. (1908). The Future of Mathematics Science and Méthode. Retrieved on 5/17 from

http://www-history.mcs.st-andrews.ac.uk/Extras/Poincare_Future.html
Roberts, D. (1973). The Existential Graphs of Charles S. Peirce. Paris:Mouton.
Rotman, B. (1987). Signifying Nothing: The Semiotics of Zero. Palo Alto, CA:Stanford U. Press.
Spencer Brown, G. (1969). Laws of Form. London, UK:George Allen and Unwin.
Varela, F. (1979). Principles of Biological Autonomy. New York, NY:North Holland.
Varela, F. & Goguen, J. (1978). The arithmetic of closure. Journal of Cybernetics, 8, p.291-324.
Wolfram, S. (2002). A New Kind of Science. Champaign, IL:Wolfram Media.

�56

