
A Simple Space

William Bricken

December 1986

Contents

1 Context 2
1.1 Representational Dimension . 3
1.2 Limitations of a Linear Notation 3
1.3 Planar Notation . 5
1.4 A Simple Logical Space . 5
1.5 Set Notation . 7
1.6 Functional Spaces . 7

2 Foundation 9
2.1 The Empty Simple Space . 9
2.2 The Two Voids . 10
2.3 The Simple Token . 11
2.4 Delimiting Tokens . 11
2.5 Extension . 12
2.6 Intension . 12
2.7 The Leap of Faith . 13

3 Application 13
3.1 Mathematical Notation . 13
3.2 Logic as an Interpretation . 14
3.3 Variables . 17
3.4 Equations . 18
3.5 Graph Notation . 19

4 Summary 21

Copyright (C) 1986: William M. Bricken, All Rights Reserved.

1

Abstract

The lines in which we write mathematical symbols impose constraints
upon mathematical thinking. A simple space of representation is pro-
posed that does not enforce the linear concepts of associativity, commu-
tativity, duplicity of representation, and binary scope. The properties of
this simple space are discussed in the foundational case when the space
is empty and in the self-referential case when the space contains only
representations of itself. Concepts that evolve from this discussion in-
clude representational incompleteness, functional spaces, boundary ob-
jects, representational unity of object and process, and two kinds of void.
The implications of a representational space without linear properties are
explored for propositional calculus. A graph notation is proposed as a
simplification of the traditional linear notation for logic.

I wish to discuss the space in which we record symbols. The central idea
is that mathematical operations are more clearly expressed in a space which
imposes fewer constraints upon the tokens it contains. Tokens placed in lines
encourage sequential metaphors, while tokens spread over a plane encourage
parallel metaphors. A simple space of representation frees objects within it
from irrelevent syntactic constraints.

My primary motivation for writing this paper is to attempt to elucidate a
different way of thinking about mathematical symbolism. This approach has
been personally helpful, both in my understanding of mathematical systems
and in my implementation of parallel inference engines for Artificial Intelligence
applications. After some context setting in Section 1, I will construct, from
scratch, a simple space of representation for mathematical expressions (Section
2). I will then show how this simple space can be used to simplify propositional
logic (Section 3). My main concern is with redundancy. The elegance of the
representation of logic, for instance, is critical to the efficiency of automated
theorem proving and of inference engines in expert systems. Unnecessary and
redundant rules slow computation. The space I will describe is particularly
powerful computationally because it supports parallelism in deduction. It is
particularly powerful psychologically because it provides a clear way of thinking
about representation.

1 Context

The sequential space of linear notation is highly structured. This structure
imposes redundancy upon the tokens recorded in the linear space. A planar
alternative is considered in the contexts of integer addition, elementary logic,
and elementary set theory. The notion of a functional space is introduced.

2

1.1 Representational Dimension

The space in which tokens are recorded is called the representational space.
The assumptions embedded in a representational space deeply influence the
expressive power of the tokens lying in that space. By shifting our analytic
attention from the symbolic figures to the representational ground, I hope to
clarify the basis upon which our understanding of syntactic forms is constructed.
To further this examination, I wish to restrict the discussion to elementary
mathematical concepts and to a minimal set of tokens.

The most common form of recorded symbols is written language. The space
in which words are recorded is one-dimensional: we string words out on an
invisible line and read these words by scanning the line from left to right. Im-
plicit conventions permit our focus of attention to roll off the end of one line
and start again at the beginning of the next lower line without interruption.
In this way, we organize a two-dimensional space so that it incorporates a long
one-dimensional sequence. We similarly structure multiple pages in three di-
mensions into a yet longer string of words.

An interesting deviation from this regime is when the text includes a picture
or illustration. We set such non-linear spaces aside in a frame, recognizing that
an entirely different form of information is contained therein.

Blackboards, in contrast to lined paper, tend to accumulate diagrams and
doodles. When given an unstructured space, we tend to fill all of its dimensions
with information. Each dimension sustains a different kind of information.
Thus, we fill three spatial dimensions with sculpture; two spatial and one time
dimension with films and television; three spatial dimensions and one time di-
mension with actions and behaviors.

I wish to limit the scope of this discussion to tokens written on a flat surface,
in two spatial dimensions. In particular, I wish to examine the mathematical
ideas that arise when tokens are arranged in sequence in order to discover which
of these ideas are rendered irrelevant when tokens are spread across the two
dimensions available on the page.

1.2 Limitations of a Linear Notation

We are all familiar with conventional mathematical notation. Designated tokens
are assigned a meaning. Some tokens represent static objects, others represent
operators that relate tokens. Object-tokens and operator-tokens are strung on
a line, just like words. For example, in elementary arithmetic we write 5 + 3.
That this combination of tokens identifies a specific numerical object, 8, can be
represented by further stringing of tokens: 5+3 = 8. In this case, we might not
know which operator (+ or =) to apply first, so we invent precedence rules or
add grouping tokens such as the parenthesis to keep our sequence of operations
unambiguous.

The example of integer addition identifies several limitations on the scope of
mathematical representation in a linear space. Specifically:

3

Binary Scope: Lining up tokens in a linear representational space permits
us to associate by proximity only two object-tokens with each operator-token.
If we wish to add three integers, x + y + z, we must include a duplicate of the
operator-token. The meaning we wish to assign to the plus-token, however, is
not restricted to the addition of only two numbers at a time. Our convention
of linearity forces a focus on binary relations. One alternative to the binary
scope of the linear plus-token is column addition. We stack numbers in another
dimension, and apply the addition operator to the column. Another alternative
is offered by the programming language LISP, which permits multiple object-
tokens under a single operator-token by writing, for example, (+ x y z). To
get this scheme to work, we must also add a set of delimiters (parentheses) to
the expression, to tell us where the addition operator stops acting on numerical
tokens.

Duplication of Tokens: Binary scope requires us to write duplicate operator-
tokens for what is essentially the same operation. Similarily, when the same
object is operated upon more than once, as in the logical expression a ∨ a, the
object-token must be recorded twice in order to appear on each side of the op-
erator. Duplication of tokens is an act of overt redundancy, and a violation of
Occam’s razor. A notation that reduces this redundancy would be more efficient
computationally and more elegant conceptually.

Sequential Precedence of Operators: Recording binary operators in a
line, such as in x+y∗z, creates a problem of precedence. Which operator should
act first? Operators must be explicitly grouped in the order of their intended
application. To remove its inherent ambiguity, the example can be written as
x + (y ∗ z), where nested operations are understood to take precedence over
those in the outer context. The deeper problem is that representation in lin-
ear space forces sequential processing. We must approach operators one at a
time because one-dimensional representations must be processed in a step-wise
sequence. We can see all the tokens at once, from our privileged perspective
outside of the page, but the implementation of the operations is intended to
occur sequentially. An alternative to the sequential bottleneck is to permit par-
allel operations. Parallel implementations of mathematical operations are just
beginning to be understood.1 In the example of column addition, we might
imagine each column being added simultaneously, with carried integers being
added to the result.

Sequential Ordering of Objects: In linear notations, we are forced to
nominate a first and a second object-token for each binary operation. We must
then invoke a rule that permits order not to matter when the operator is com-
mutative. For example, the commutativity of addition tells us that x + y is the
same as y+x, even though the representation of each is different. An alternative

1Parallelism is quite uncomfortable to our minds; we are so accustomed to the linear one-
token-at-a-time regime of spoken and written language that multiple concurrent processes find
a comfortable metaphor only when spread over different minds.

4

x

y

z

Figure 1: The Addition Plane with Three Elements

is to invoke rules only when order does matter. Linear notation creates the im-
age that we begin with the left-most token and combine it with the right-most
token using the operator-token. This regime, however, is merely an implemen-
tation detail. A parallel implementation can be imagined in which we begin
with both object-tokens and operate upon them simultaneously.

1.3 Planar Notation

Binary scope, representational duplicity, associativity, and commutativity are
artifacts of a linear notation. Some mathematical operations, such as subtrac-
tion, rely on these characteristics. Other operations, such as addition, do not.
We recognize the lack of applicability of linear features by forming rules that
permit rearrangement. But this method of granting permission is itself only a
concession to the linear space of representation. The traditional representations
of addition confuse the meaning of addition with the machinery that achieves
the meaning. Imagine instead placing tokens to be added in a planar space
(Figure 1). The addition plane does not specify ordering or grouping of tokens.
The planar representation is intended to capture the idea that an operation can
apply equally to all tokens in the space. Linear structure can be added later for
operators that are not commutative or associative.

What we really want is a representation that encapsulates the intention of an
operation without imposing irrelevant baggage. A space that does not require
transformation rules to express our intentions will be called simple. A simple
space supports simple forms that may be taken at face value. Acquiring an un-
derstanding of the simple space for specific operators requires the generalization
of several mathematical principles. It also results in new conceptual skills.

1.4 A Simple Logical Space

I wish to restrict the discussion again, this time to the domain of elementary
logic, to the common logical operators of not, and, and or and the logical
constants true and false. Logic is an excellent system in which to develop the
skills associated with non-linear representation. It is a model of rational thought
processes. It is simple and intuitive. It also suffers extensively from redundancy
and irrelevancy introduced by a linear space of representation. For example, the

5

operator or means conceptually that at least one of several alternatives is true.
We write the expression (a or b or c or d), meaning that the entire expression
is true when one of the variables is true. The location of the true variable
is irrelevant, yet sequential processing forces an unnatural implementation: we
look first at a, then, if necessary, at b, then at c, and so on. What we should do is
something like (parallel-or a b c d), which means: examine all the options
at the same time and if any one of them is true then the expression is true.
parallel-or is difficult to achieve by linear symbol processing, yet it is easy
for our visual system. When the truth-values of each object are furnished, as in
(parallel-or f f t f), we quickly assess the situation visually, in parallel,
to determine the result.

My motivation is to identify the minimal characteristics of a space of rep-
resentation for logic. A more efficient representation implies a more efficient
deductive procedure. By expressing logic in a specifically tailored simple space,
I hope to come to a deeper understanding of what logic is, and which artifacts of
our traditional linear notation clutter logic with representational irrelevancies.
This program was first carried out by G. Spencer-Brown.2

A linear notation imposes irrelevant restrictions on the representation and
associated meaning of logical expressions. In the formalization of logical se-
mantics, we convert our intentions into a symbol system that permits syntactic
transformations. After transformation, we re-interpret the syntactic result se-
mantically. In this process, it is desirable to avoid syntactic systems that add
more than what is intended. Traditionally logical or, for example, is associa-
tive, commutative, and idempotent, with the constant false as a right and left
identity. Instead of accepting this linear definition, I will suggest that the oper-
ator or is insensitive to order, grouping, duplicity, and identities. Further, it is
the representational space itself, and not the operator, which must be intoler-
ant of irrelevancies. Representing logical or in a simple logical space simplifies
the representation of logic and the process of deduction. The construction of a
simple logical space is described in Section 3.2.

The characteristics of a simple logical space follow:

• Multiple Scope: The simple logical space supports the existence of any
number of tokens, including none.

• Intolerance of Duplicity: Each token in the space is unique. Duplicates
of tokens are not supported.

• Intolerance of Ordering: The space will not support an order between
tokens. Tokens cannot be sequenced. All are addressed simultaneously, in
parallel.

• Intolerance of Grouping: The space will not support groups of tokens
within it. All tokens are acted upon equally and concurrently.

2G. Spencer-Brown, Laws of Form, George Allen and Unwin Ltd., London: 1969.

6

The process of moving from a linear to a simple space of representation is
one of shifting perspective. Traditionally, a linear space is assumed as the basis
of representation. The shift of perspective is to see the space of representation
as not supporting sequence. Sequencing rules are secondary, to be added later
when specific operators require them.

1.5 Set Notation

The image that emerges from the specification of a simple logical space is a
representational space in which unique tokens float, unconnected and unstrung.
The only communal property they share is that they jointly occupy the same
space. The mathematical concept of a set achieves these objectives. Sets can
contain an arbitrary number of members and they do not support duplicity or
ordering.

To represent a set, the traditional notation places a boundary around the
tokens that represent the set members, {a, b, c, d}. Implicitly, a set with
duplicates3 such as {a, a, a}, is transcribed into a set with no duplicates, {a}.
As an example, the set operation of union might be expressed as

{a, b, c} ∪ {c, d} = {a, b, c, d}
Here, the token c occurs twice on the left-side of the equality because of

physically separate references. The result on the right-hand-side coalesces the
two references into one.

A difficulty with linear set notation is the prevalence of the comma-token,
intended as a reminder that the members are not really in order, they are just
written that way. Another difficulty is that the set operator, union in the
example, is external to the set itself, in a different kind of representational
space.

The need to include comma-tokens might be alleviated by using both di-
mensions of the page. Tokens can float in this non-linear space, not grouped or
related in any way other than by their common membership in the same space.
To support object-tokens we can set aside a simple set-space within which the
member-tokens are represented. This idea is illustrated in Figure 2.

An alternative to recording operator-tokens in a separate space is to elim-
inate the need for an operator-token altogether. Basically this is achieved by
assigning the space which contains tokens the power to operate on them. The
space itself can be attributed a functionality.

1.6 Functional Spaces

A functional space operates upon the object-tokens within it. The boundary-
token that differentiates the interior of the space from the exterior can serve to
identify the function of the space within. In the set example, the curly brackets
can be seen as containing an active space which maintains the union of its

3This is actually a contradiction in terms. If it contains duplicates, it is a bag, not a set.

7

b
d

a
c

Figure 2: Members in a Simple Set-Space

contents. Boundaries partition the implementation of the function of a space
from the result returned by that operation. The boundary and its contents can
be interpreted as an object-token representing the result of the operation of a
functional space. The tokens embedded within a functional space refer to the
pre-implementation details, the initialization of the function of the space.

Consider an example of the simple addition space expressed in LISP nota-
tion: outside, we can ignore the detail of the numerical tokens within the space.
The bounded addition space represents the numerical object sum. The bound-
ary itself hides the details of the implementation and of the arguments of the
space. Viewing the addition space enclosed by the boundary-token, we see the
integers to be added embedded as object-tokens in the space. Tokens in the
interior of a functional space record the input conditions of that space. The
space itself converts these inputs into a result.

I have suggested that spaces themselves can operate. This change of nota-
tional perspective provides a significant advantage: recording the problem in an
operational space is sufficient to generate the answer. In the addition example,
it is like entering the numbers into a calculator that is pre-set to add. When the
entry process is finished, the calculator shows the result. In the set union exam-
ple, placing the tokens from different sets into a common simple set-space yields
the union. The space itself will simply not support the entry of a duplicate
token.

The function of a space and the type of tokens within that space are mutually
dependent. The type of object-tokens within a space constrains the type of
operations a space can embody. In the addition example, tokens of type integer
are summed by the addition space. If the space were a logical and space, integer-
tokens would not resolve into a single token representing the sum. Thus, the
kind of token and the kind of operation are intertwined; the function of a space
and the type of its tokens are mutually definable.

Functional spaces introduce the powerful representational idea of object-
operator equivalence. Bounded expressions can represent both an object and
an operation performed on contained objects. In the example of set union, the
curly brackets specify both a set object and the operation of the union of its
contents. In the addition example, bounded integers can represent both the sum
object and the operation of adding the contents of the addition space. This idea
is developed from first principles in the following section.

8

Figure 3: An Empty Simple Space

2 Foundation

The simplest space, which is empty, is described from an intuitive perspective.
The simple token is a representation of the boundary of the simple empty space.
Two rules are constructed to describe the desirable characteristics of simple
tokens. When the simple token is interpreted extrinsically as an object, duplicity
is not permitted. When it is interpreted intrinsically as a process, regression is
not permitted.

2.1 The Empty Simple Space

I wish to limit the kind of tokens we permit into the simple space, in order to
limit the kind of operations we might expect of it. The task then is to choose
an appropriately simple type of token to put into the simple space. Since the
simplest space is empty, I will first examine this space-without-tokens. The
introduction of tokens into the empty space cancels its emptiness. Figure 3
delineates an empty simple space.

The simple space that is devoid of tokens is special in that it is difficult
to locate without its boundaries. We are forced to recognize the need for a
boundary, if only to contain nothing. The boundary is also handy for separating
other types of space that might occupy the same page out of convenience.

What we see as the empty space depends on our point of view. If we focus
on the inside, we see nothing. If we focus on the outside, we see the boundary
that frames nothing. The interior of an empty simple space does not support its
own identification. We must view it from the outside in order to identify that
it exists at all.

In set theory, the notation for the empty set, curly brackets { }, is a frame
around nothing.4 In the case of addition, an empty additive space, () repre-
sents zero. In general, we can concentrate on the notation, which is the frame,
from an external perspective, or we can concentrate on the concept, which is
nothing, from a perspective internal to the frame.

4Kauffman and Varela, Form Dynamics, Journal of Social and Biological Structures, 1980,
3, p. 172

9

The key to understanding the simple space is to understand our interaction
with it. I have suggested that the description of the space differs depending
upon where we focus. Moving from the details of the inside to the result on the
outside means that our perspective determines whether we see the contents of
the space or the result of the function of the space. We initiate functionality by
shifting perspectives.

What then is the functionality of an empty simple space? What happens
when we shift our perspective from the inside to the outside of an empty simple
space? We perceive the boundary. The fundamental function of the empty space
is to make us aware of its existence. We move from nothing to a boundary which
delineates nothing from everything else. The boundary is the objective aspect
of the empty simple space. The representation of this boundary is the most
simple token. It is discussed in Section 2.3.

Indirectly, nothingness can be defined by its container. As an analogy, we
can talk about being out of coffee because we have an empty cup. Without
the cup, we lose the context to make sense of the idea of being out of coffee.
Similarly, without the boundary, we cannot make sense of an empty space.

2.2 The Two Voids

I am drawing attention to the fact that there are two kinds of emptiness. We
can observe a bounded emptiness, such as an empty cup or an empty space,
because the boundary provides a place from which we can observe. We can safely
stand outside, without destroying the emptiness, and point to the emptiness
within, and observe the nothing. Total emptiness, however, does not support
our observation of it. If we were able to observe it, we would be placing our
focus in it, rendering it non-empty and no longer what we wish it to be. It is
no longer total emptiness solely because our attention fills it.

There are two kinds of void. The Absolute Void is simply not available to
contemplation. It is Emptiness. The Relative Void is indirectly accessable, at
least to thought. It is Empty Space.5 We can use the Relative Void as a space
of representation by putting tokens in it. It is impossible, however, to place
tokens in an Absolute Void. The only route from the absolute to the relative is
through non-symbolic conscious choice.

This concept, that there are two voids, forms the basis of a more general
form of mathematics. The distinction between empty and emptiness is all that
is necessary to construct traditional mathematics. The empty simple space is
the foundation upon which a deeper understanding of the process of creating
symbols can be built. In its essence, the conversion from emptiness to empty
space is the process of picking up a piece of paper with the intent to record
tokens. It is an acknowledgement of a sentience that is creating symbols. As
a starting point, the genesis of an empty space from emptiness incorporates
the mathematician as the fundamental mathematical construct. Next, I will
attempt to demonstrate that this distinction is indeed informative.

5The word emptiness is a noun, it refers to the Absolute Void, a state with no properties.
The word empty is an adjective, it identifies the only property of the Relative Void.

10

Figure 4: A Simple Space that Contains a Simple Token

2.3 The Simple Token

The simple token is the representation of the boundary of an empty simple space.
The space is functional, a process; the boundary is declarative, an object. The
simple token represents, or objectifies, the single process of the empty simple
space, which is to bring its existence to our attention. The process of moving
our focus of attention from the inside, where this is nothing, to the outside,
where we see an empty container, constructs the simple token in the form of a
boundary. The boundary-token is the representation of the container as seen
from the outside.

When we shift perspectives, we discover a boundary. We can represent that
discovery by drawing the simple boundary token. What is discoverable when
we place the boundary token into the empty space (Figure 4)?

By construction, the boundary token represents an act of our own volition,
that of shifting perspectives. By placing a boundary token into the empty space,
we examine, symbolically, our shift of perspective. Self-observation is at the core
of simple symbols. After a brief diversion into linear notations for boundaries,
I will discuss the symbolic consequences of simple self-observation.

2.4 Delimiting Tokens

We can adopt a convention that permits limited planar representations in a
single dimension. The parenthesis permits a planar representational space to
be encapsulated in a line. Parentheses, and other delimiting tokens such as
brackets, braces, and quotation marks, are by construction unusual. They come
in pairs; it takes two of them to express the elementary idea of containment,
or bounding. Parentheses put non-linear boundaries on strings of linear tokens.
There are two of them because the parenthesis actually exists in two dimensions,
around token strings. This means that a parenthesis can be used to express
the boundary we see when we frame an empty space. Parentheses relativize
the void. Therefore, I will use an empty parenthesis, (), to represent the
boundary between nothing, on the inside, and our observation of nothing, from
the outside. Parentheses used in this manner will be called parens.

11

2.5 Extension

The empty parens, (), indicates a choice of perspective. It represents our ini-
tialization of symbolic activity in the act of setting aside a representational space
on the inside of its boundary. We can place this simple token into the empty sim-
ple space, forming a double parens: (()). Once having taken this step, other
possible configurations arise. For instance, we might place yet another simple
token in the simple space, forming the expression (()()). Or we might insert
many tokens, forming longer expressions, such as (()()()()()).

It is at this point that we must interpret these complex expressions, in order
to avoid the confusion of an unbounded proliferation of forms. One possible
interpretation is to say that we are counting. The number of simple tokens
in a space defines an integer. Although this is valuable (we invent integer
arithmetic), it is prematurely complex. I wish, instead, to return to an initial
objective for the simple space, that it does not support duplicity. Two identical
tokens should mean the same as one of them. Since we have only one kind
of token, all duplicates are necessarily the same. We cannot tell the difference
between copies of the simple token without adding structure to the simple space.
If we were to add ordering structure, for instance, we could talk about the first
token and the second token and so on. But this I wish to avoid, since the intent
of the simple space is to minimize supported structures.

Like duplicate members of a set, duplicate simple tokens are the same as a
single simple token. Symbolically,

(()()) =⇒ (())

The benefit of not entertaining duplicity is that we are forced back to un-
derstanding what it means to fill a space with a representation of our choice of
perspective: (()).

2.6 Intension

In this simple symbolic world, another complexity arises. By the same process
of insertion of a simple token into an empty space, (()), we can insert the
complex token of the double parens, ((())). Similar to the case of duplicity,
we must furnish an interpretation in order to avoid the confusion of unbounded
self-observation.6 What is the meaning of expressions such as (((((())))))?
Like the unboundedness of counting upwards, there is an unboundedness of
referring inward. Not only must we resolve the infinite extension, to remain
simple we must resolve the infinite introspection.

G. Spencer-Brown’s resolution to unbounded self-observation is this: an
empty parens indicates an empty representational space; a double parens with-
draws this indication and returns to non-representation. The symbolic value of
the double parens is non-existence. Symbolically,

(()) =⇒
6Such confusion occurs in the infinite regress of the homunculus.

12

The process of bounding is invertable. An empty parens is created by bound-
ing emptiness. A double parens is created by bounding this bound. The effect
of the double boundary is to return to the original unbounded emptiness. Thus,
the double parens represents shifting perspective and then shifting back.

2.7 The Leap of Faith

Symbolizing simple self-reference has the effect of cancelling the original ar-
rangement to enter the symbolic arena. This insight may require a leap of faith.
I will attempt one other explanation of this result and then leave the subject,
treating the equivalence between self-observation and non-representation as an
axiom.

Spencer-Brown’s calling is what I have referred to as intolerance of duplicity.
This is easy to understand when we treat the empty parens, (), as an object-
token. Identical objects add nothing to our knowledge; therefore we need only
one token to refer to them/it. Symbolically

() () =⇒ ()

We do not need two tokens to represent the one idea of creating a space for
symbols.

Spencer-Brown’s crossing I have referred to as self-observation. This is eas-
iest to understand not as an object but as a process. The process of indicating
our symbolic intention by creating a space is itself symbolized by the empty
parens. The process of referring to our symbolic creation is symbolized by the
double parens. Just as indication of nothing denies that nothing, reference to
the indication of nothing denies that reference. We return to the non-symbolic
source, not represented and not on the page. Symbolically,

(()) =⇒

3 Application

The simple space and the simple token, when interpreted as logical structures,
simplify both the concepts and the representation of traditional logic by remov-
ing the irrelevant features imposed by a linear notation. Elementary logic can
be seen as unnecessarily complex; its foundation can be traced back to the two
forms of void and to the one act of shifting perspective. The introduction of
variable-tokens permits a generalized description of the rules governing simple
spaces. A network representation for logic is proposed.

3.1 Mathematical Notation

I have mixed cognitive psychology with mathematics. We do not need to in-
terpret the empty parens as a shift of perspective and a double parens as a
self-observation. Purely mathematically, the simple space can be defined as

13

idempotent, which means that duplication does not change its contents. Func-
tionally, the double parens can be defined as the replication of an invertable
operation. The application of the second operator cancels the effect of the first.

In traditional mathematical notation, let F be the function of the simple
space. Let m be the boundary-object indicated by the empty parens. The
constant m is generated by applying F to no arguments. Symbolically,

F [] = m

By composition,

F [m] = F [F []]

Neither of these functional expressions have an expressable value. F, then, can
be seen as an existence operator. Odd compositions of F express the creation
operation; even compositions express the destruction operation.

3.2 Logic as an Interpretation

A natural interpretation of parens expressions as propositional logic is readily
developed from an intuitive basis. The rather abstract ideas of emptiness, empty
space, and self-observation form a simple basis for formal symbolic logic.

We have seen that the empty parens can be viewed from two perspectives,
one of which is represented. Let us choose to associate representational existence
with truth. If it exists, it is true. Let the empty parens, (), as an object-token,
be the representation of the truth-value true. This choice then prescribes the
rest of the interpretation of logic as parens expressions. For instance, if it does
not exist, it is false.

The direct path to understanding the non-representation of the truth-value
false is to see it as a dual perspective. Falsity is the alternative perspective
to truth. The dual of an empty parens is identified by shifting from its outside
to its inside. The concept false, then, is represented by the contents of the
empty parens. Since there are no tokens on the inside of (), false has no
direct representation. This representational incompleteness is a source of rep-
resentational power: only one of two opposite concepts need be indicated by a
token. The non-representation of false is a direct consequence of associating
the representation of true with symbolic existence.

Seeing the polarity of the two truth-values as alternative perspectives is the
same as specifying the functional interpretation of the empty parens. When
interpreted for logic, the boundary-token negates its contents in the same way
that truth negates falsity. Symbolically,

true = ¬false

Expressed as parens expressions,

() = ()

14

where the parens on the left is an object, and the parens on the right is a process.
The parens has an interpretation both as an object and as an operator. It is

both the constant true and the operator not. Since we may need to refer to
the concept of false by a label, we can use the negating power of the parens
to achieve this indirectly. An empty parens is true; a double parens is the
negation of truth. That is, the double parens is false. Symbolically,

false = ¬true

In parens,

= (())

The double parens can also be interpreted as the composition of two negations:

¬¬false = false

Next, we associate a logical operator with the operation of the simple space
itself. To see which operator, consider the expression (() (())). The outer
boundary contains a simple space which is host to two expressions, () and ((
)). We know the logical meaning of each of the two expressions. The first is
true and the second is false. We also know that the false expression vanishes,
leaving only the true expression in the space. Since we wish to construct
an interpretation for the simple space that is not confusing, we will want to
maintain the value, or meaning, of expressions when they are simplified. So we
ask, what logical operator combines true and false to yield true. The answer
is the operator or. The simple space operates as or when the tokens within
it are interpreted as logical values. In the example (() (())), the outer
boundary negates the disjunction of the two inner expressions. One possible
way to interpret this expression in logical tokens, then, is

¬(true ∨ false)

The logical value of such an expression is false. This is supported by the
observation that the parens expression vanishes when simplified:

(() (())) =⇒ (()) =⇒
Thus, the parens represents a generalized logical operator. It is applied to all

of its contents, which may be of any number. When there are no contents, the
0-ary operation generates the constant true. When there is a single argument,
the parens represents not. When there are two or more arguments, the parens
represents a generalized nor with arbitrary arity.

The relations between expressions composed of parens and the connectives
of logic are summarized in Table 1. The capital letters are variables which
represent arbitrary expressions. This table illustrates that the map between
traditional logical notation and parens expressions is many-to-one. Thus the
parens notation simplifies the representation of logical expressions. Where a

15

true =⇒ ()
false =⇒ (())
A ∨ B =⇒ A B

¬A =⇒ (A)
A ∧ B =⇒ ((A)(B))

A → B =⇒ (A) B
if A then B else C =⇒ (((A) B) (A C))

A ≡ B =⇒ (((A) B)((B) A))

Table 1: The Map from Propositional Logic to Parens Expressions

minimum of three logical tokens are necessary (say, false, not and or), only
one bounding token is necessary. The concept false is absorbed into the simple
logical space, while negation and disjunction are joined into the single concept
of an arbitrary arity nor.

As an example of the representational condensation that parens provides for
logic, consider the expression

((()) (()()))

There are many ways this expression can be interpreted for logic. We see the
outer mark negating two inner expressions. The inner expressions are joined
by or, the function of the simple space. The first expression in the linear
representation is the token for false, but it is also the expression for not
true. The second expression is the negation of two trues joined by or. Thus
the whole expression stands for

¬¬true ∨ ¬true ∨ true

But it also stands for

¬false ∨ ¬true ∨ true

And it also stands for

true ∧ (true ∨ true)

This latter reading is obtained by regarding the outer-most parens structure
as that of the operator and: (()()). We can insert the non-represented
logical concept false at every space in the example. These spaces are virtually
everywhere. Thus, another interpretation is

¬¬¬false ∨ (false ∧ false)

16

The parens expression, then, reduces many logical expressions to the same
form. The key to the multiple interpretation of parens expressions is that the
parens is both object and operator. The key to the representational simplicity
is that the simple space is both object-without-token and operator-without-
token. The parens language is a canonical reduction of logical notation. It
reduces redundancy by reducing the possible forms of a logical expression. The
simple space has provided us with a powerful tool, it simplifies a fundamental
mathematical system, that of propositional logic. Another way of viewing this
gain is to say that propositional logic is unnecessarily complex.

The linear space in which we have grown accustomed to writing symbols
has lead us to establish systems of mathematical representation on a baroque
foundation. By teaching the linear notation of propositional logic to students,
we teach them the skills of convoluted thinking. They will be correct, but their
processes will be awkward. The analogy is attempting to learn multiplication
using Roman numericals.

I have specified two rules that simplify parens expressions, intolerance of
external duplicity and intolerance of internal regression. These two mathemat-
ical skills are sufficient for thinking about logical expressions without variables.
They provide a simple foundation for clear formal thought. The introduction of
variables permits these tools to be abstracted.

3.3 Variables

A variable is a token that refers to a set of expressions. Two natural collections
of parens expressions are those that vanish when simplified, and those that do
not. Some examples that vanish are7

(())
(((())))
(()())

Some that do not vanish are

()
((()))

((())(()))

Rather than listing all the expressions that vanish, it is convenient to refer to
them all by the variable N, for non-existent. It is relatively easy to see that
expressions that do not vanish all simplify to an empty parens; I will label this
set M.

Another use of variables is to refer to arbitrary expressions, those that we do
not yet know their classification. Arbitrary expressions might belong in either
set N or M. Several of these variables are handy, I will use the capital letters
{A, B, C,...}. A special case of arbitrary variables are those that represent

7It may be informative to transcribe these expressions into a logical interpretation.

17

ground expressions, either the empty parens or non-existence. I will use the
small letters {a, b, c,...} to represent arbitrary variables that are represent
no more than one parens. Finally, variables can be used to represent arbitrary
objects, not necessarily parens expressions. This leads to the construction of
domain theories, which I will not address.

3.4 Equations

Now we can express the characteristics of the simple space algebraically, us-
ing equations that incorporate variables. For instance, our desire to eliminate
duplicates might be written as

A A = A

where A stands for any parens expression. Any expression which shows up twice
in a simple space should be eliminated. The irrelevancy of the double parens
can be written as

((A)) =⇒ A

Any expression which is surrounded by double parens can be freed from the
unnecessary inversions.

Earlier, I suggested that we have permission to insert tokens into a simple
space in order to study them. This can be symbolized as

A () = A (A)

Here we recognize that we thought of some arbitrary expression A, external to
the space we wish to study it in, and inserted it into an empty simple space.

Other rules of the simple space come easily. For instance,

A () = ()

We know that A is either in N or in M. If it is in N, then when A is simplified, the
rule will read

() = ()

since A has vanished. If A is in M, then the rule will read

() () = ()

which is a special case of intolerance of duplicity. In both cases the rule is
correct.

Variables point out the inadequacy of the linear bounding language of parens.
Specifically, consider the expression (A (A)). Because the token A exists in two
different spaces, we are forced to duplicate it in this linear expression. We must
reinstitute a planar representation to avoid this kind of duplicity.

18

Parens Linear Notation ((()) (()()))

Extruded into a Tree

()

() ()

() () ()

Parens Graph Notation

()

() ()

()()()

!! ""

!! ""!!

Figure 5: The Construction of a Directed Graph from a Parens Expression

3.5 Graph Notation

Graph notation is an alternative representation that eliminates the redundan-
cies of linear notations. In the graph notation, each node represents a token.
Multiple references to the same token are achieved by links, or pointers, to a
unique object. Each link indicates that the token below is contained within the
boundary-token above. (Thus, the graph is directed.) Graph notation relies on
the containment exhibited by parens operators.

As an example, the expression ((())(()())) is pictured in Figure 5.
This graph is a tree. Its various interpretations for logic are discussed in Section
3.2. The figure illustrates how the outer-most parens forms the top-node of the
graph. Levels of the graph correspond to successively deeper nested spaces in
the parens expression.

The introduction of variables can change a tree into a network. Consider
the graph in Figure 6. In this example, the variable a has been inserted into the
deepest spaces of the previous example, forming the expression (((A))((A)(A))).8
The graph representation expresses the same configuration using only one vari-
able token a. With graph notation, we can picture the expression (A (A))
without duplicate references to the variable A. This network is presented in
Figure 7.

Rather than explore the power of graphic notation for complex expressions,
I wish to conclude by returning to the original inadequacies of linear notations,

8This may be transcribed into logic as ¬(¬¬a ∨ (a ∧ a)).

19

()

() ()

()()()

A

!! ""

!! ""!!

#
#

##

$
$

$$

The expression (((A)) ((A)(A))) as a network.

Figure 6: A Graph Representation of an Expression with Variables

()

()

A

!! %
%
%
%
%%

"
""

Multiple links indicate multiple references to tokens.

Figure 7: A Graph Representation of the Expression (A (A))

20

Multiple Scope

()

A B C
!! ""

A node may have any number of links.

Intolerance of Duplicity

()

A

Two nodes can be connected by at most one link.

Lack of Ordering and Grouping

()

C A B
!! ""

Nodes are connected equally without order.

Figure 8: Graph Notation Alleviates Linear Irrelevancies

expressing each of these in graph notation. Figure 8 contains the graph nota-
tion for multiple scope, intolerence of duplicity, and intolerance of ordering and
grouping relations in the simple space.

4 Summary

In this paper, I have suggested that it is not a good idea to confine mathe-
matical notation to lines on a page. The benefits of a notation supported by a
simple, non-structured space include the elimination of binary scope, duplicity
of representation, commutativity and associativity. When such a notation is
interpreted as propositional logic, the foundations of traditional symbolic rep-
resentation can be seen to be overly elaborate. Several notational innovations,
such as the simple space, the simple token, functional spaces, parens notation
and graph notation are suggested as steps toward the clarification of symbolic
conventions.

The key concepts proposed in this paper follow:

21

• Non-linear representational spaces free elementary mathematical systems
from linear irrelevancies.

• The empty simple space and the simple token provide a foundational
model for formal symbol systems. They refer to the two types of void.

• The maintenance of simplicity requires constraints both on the duplicity
of tokens and on the replication of operations.

• Functional spaces and boundary-tokens permit the representational col-
lapse of the object-process dichotomy.

• Representational incompleteness permits notational elegance.

• Graph notation permits non-duplicity of representation.

• Elementary logic can benefit from a shift in perspective.

To foreshadow the potential utility of parens and graphic notation inter-
preted as logical expressions, consider the construction of computer programs
that perform inference. Such programs are the heart of expert system technol-
ogy, and are fundamental to the field of Artificial Intelligence. An inference
engine based in parens notation can represent deductive tasks more efficiently
and reach deductive conclusions in less steps than inference engines based in
traditional techniques.9 Linear Losp is a parens-based engine that uses list pro-
cessing as its implementation paradigm. An inference engine based in graph
notation performs parallel deduction over a network. Parallel Losp implements
this facility using a message-passing paradigm in which each node in the network
is a small computing system. Both versions of Losp demonstrate the efficiency
and elegance of computation in a simple space.

9The formalization of these simplified processes is presented in W. Bricken, A Deductive
Mathematics for Efficient Reasoning, unpublished.

22

