
Spencer-Brown Numbers
William Bricken
January 2001 with minor edits and formatting changes, September 2012

Spencer-Brown published Laws of Form in 1969, the first and seminal text on iconic mathematics.
In it he demonstrated an application of iconic techniques to logic, developing a void-based
boundary logic. In private correspondence he has shared his unpublished version of integers
based on iconic techniques. This system provided the initial example of how to think about
numerical computation in void-based and boundary terms.

Spencer-Brown Arithmetic (Parenthesis Version)

In Spencer-Brown arithmetic, each number is both an object and an operator. Operations are very
easy, however the representation of integers is clumsy.

	

 Integers	

 Stroke arithmetic in a container

	 	 0	 	 	 ()
	 	 1	 	 	 (())
	 	 2	 	 	 (()())
	 	 3	 	 	 (()()())

Reduction Rules

Two transformations of form provide all computational, standardization, and evaluation
techniques.

	

 	

 ((A)) = A	

 	

 	

 	

 Involution

	

 	

 (()()) A = ((A)(A))	

 	

 Distribution

From a group theory perspective, commutativity and associativity are assumed to be implicit in
the form. From an iconic perspective, commutativity and associativity are irrelevant concepts.

Operations
In iconic systems, an operation consists of forming a new configuration. All computation is
expressed as a reduction of the new configuration.

Addition is placing each form to be added in a container and then placing the entire collection in a
container.

	

 	

 addition	

 	

 	

 A+B	 	 ((A)(B))

Multiplication is placing forms together in the outermost space.

	

 	

 multiplication	

 	

 A*B	 	 A B

! 1

Power (exponentiation) is placing the base in a container, then placing that and the exponent into
another container.

	

 	

 power	

	

 	

 	

 AB	 	 ((A) B)

The containers themselves do not have an interpretation in conventional numerics. They
maintain structural relations between spaces; the structures do have meaning as both numerical
objects and as operations. Alternatively, sharing space can be interpreted as addition, while
double-bounding becomes multiplication. This is the strategy of both Kauffman numbers and
James numbers; only Spencer-Brown’s representational approach is presented here.

Confounding Objects and Operations
The form of an integer is also the form of addition. This is characteristic of iconic systems which
confound containment as a function with container as an object. That is

	 	 0 = () = 0
	 	 1 = (()) = +0
	 	 2 = (()()) = 0+0
	 	 3 = (()()()) = 0+0+0

Spencer-Brown integers count the cardinality of nothings added together. An integer is the
cardinality of partitions of an empty set. This is a link between Conway (set-based) systems and
other iconic systems.

Since we can also interpret a form functionally, a "number" is the cardinality of an application of
the distribution rule.

	 	 (()()()) A	 	 3*A	 	 	 implicitly

	 	 ((A)(A)(A))		 	 A+A+A		 	 explicitly

Addition is placing the forms to be added in separate spaces, two levels deep. Multiplication is
placing forms in the same space at the zero, or outermost, level. The capital letter A means than
any form (not just numbers) can participate in these transformations. The absence of a form, the
void, is excluded from this system.

By interpreting an empty container, (), as zero rather than as a unit, a binary system is created
with bases () and (()). This system maps to propositional logic and to finite set theory. The
idempotent equation that converts integers into logic is:

	 	 ()() = ()	 	 	 Call	 	 idempotency

Computation

Compound forms are constructed via algebraic substitution. These forms reduce using the two
reduction rules. In essence, the container around a number-object cancels with a void container
inside a number/operator, producing a new number form through the involution transform.

! 2

Examples (square brackets are solely for highlighting, they are identical to parentheses):

	 2+3 = 5	 	 (()()) + (()()()) = (()()()()())

	 	 [[(()())][(()()())]]	 	 	 sum
	 	 [()() ()()()]	 	 	 involution
	 	 	 	 5	 	 	 	 	 interpret

	 2*3 = 6	 	 (()()) * (()()()) = (()()()()()())

	 	 [[][]] (()()())		 product
	 	 [[(()()())][(()()())]]	 	 	 distribute 3 into 2
	 	 [()()() ()()()]	 	 	 involution
	 	 	 	 6	 	 	 	 	 interpret

	 23 = 8		 	 (()()) ^ (()()()) = (()()()()()()()())

	 	 [[(()())] (()()())]	 	 	 	 power
	 	 [()() (()()())]	 	 	 	 involution
	 	 [((()()) (()()) (()()))]	 	 	 distribute 2 into 3
	 	 (()()) (()()) [[][]] 	 	 	 involution (2*2*2)
	 	 (()()) [[(()())][(()())]]	 	 	 distribute 2 into 2
	 	 (()()) [[][] [][]]	 	 	 involution
	 	 [[(()())] [(()())] [(()())] [(()())]]	 distribute 2 into 4
	 	 [()() ()() ()() ()()]	 involution
	 	 	 	 	 8	 	 	 	 interpret

Notice that during reduction, the forms do not have an interpretation, they are in a sense
notational jottings. In another sense though, the numbers themselves arrange into new structural
configurations during an operation. The new structures are unstable, they reduce by the given
rules into forms that are stable. Stable forms represent numbers.

Void Transforms

Consider the transformation rules applied to nothing, to the void.

	 	 (()) = 	 	 	 	 void involution

	 	 (()()) = (()())	 	 	 void distribution

The first rule tells us that the implicit background value, the value of the void, is 1, not 0. By
defining space to be multiplicative, space takes on the value of the multiplicative unit, such that

	 	 1*A = A

	 	 1*void = void

The second rule says that integers are stable whenever they are indicating the cardinality of void
distribution. In meta-language,

! 3

	 	 (()()()) void = ((void)(void)(void))

This meta-language is fundamentally incorrect, since the void cannot be replicated. More
accurately:

	 	 (()()()) = (()()())

Syntactic Inconsistency

Combining forms in space results in multiplication. However, this does not apply to forms
combined in the space inside a container. Consider a hybrid reading of the number three:

	 	 (()()()) ≠ (1*1*1)

Basically, the outer container has no interpretation as an operation, while reading the inner space
as multiplication undermines the integrity of the system. Algebraically, the space inside the outer
container should still be multiplicative, just like any space in this system. That is to say

	 	 ((a)(b))	 	 	 a+b

	 	 ((a)(b))	 	 	 contain[(a) times (b)]

Thus, Spencer-Brown numbers have an ambiguity: it is unclear when (in what space)
multiplication applies. Consider multiplying one times one:

	 	 1*1	 	 	 (()) (())

Void involution would convert this result to the undefined void as shown below, so we must
prohibit void involution.

	 	 (()) (())
	 	 (((()) (())))	 	 	 	 	 involution
	 	 (0 + 0)	 	 	 	 	 hybrid
	 	 (() (()()))	 	 	 	 	 distribution
	 	 (0 + 2)	 	 	 	 	 hybrid
	 	 ((()()))	 	 	 	 	 add 0
	 	 ()() (())	 	 	 	 	 distribution
	 	 0 * 0 * 1	 = 0	 	 	 	 interpret

This problem also shows up when evaluating the power relationship. Consider multiplying by
zero:

	 	 0*A	 	 	 () A

We need a new rule to be able to reduce this to 0. Spencer-Brown suggests that the configuration
is an instruction to multiply, and multiplication takes place by distribution. Therefore, A must
distribute into (). Since there is nothing to distribute into, the A is absorbed by the void.

	 	 () A = ()

! 4

It is generally agreed that this is not a strong argument, although it is very similar to Conway's
handling of void partitions when testing for a number. Still, the problem of form ambiguity recurs
for the representation of powers. Revisiting the example:

	 2^3 = 8	 	 (()()) ^ (()()()) = (()()()()()()()())

	 	 [[(()())] (()()())]	 	 	 	 power
	 	 [()() (()()())]	 	 	 	 involution

The problem is in the next distribution step:

	 	 [((()()) (()()) (()()))]	 	 	 distribute ()() into 3

Forms are independent in space, therefore it is a choice to distribute one or two unit objects. The
system should allow distribution of any set of forms that are distinct in space. Trying this, we see
that it results in an inconsistent form:

	 	 [() ((()) (()) (()))]	 	 	 distribute () into 3
	 	 [0 1+1+1]	 	 	 hybrid

We might then attempt to reduce this form by further distribution:

	 	 [() ((((()) (()))))]		 	 	 distribute 1*1 into 1
	 	 [() ((()) (()))]		 	 	 involution
	 	 [() ((((()))))]		 	 	 distribute 1 into 1
	 	 [() ((()))]		 	 	 involution
	 	 [() ()]		 	 	 involution
	 	 	 	 2	 	 	 	 	 interpret

Interpreting the inner forms as numbers is illegal, so this particular problem can be defined away.
However, stepping back prior to the distribution, we must introduce a restriction that blocks
generating the illegal form. This is necessary for representing the algebra, but it effectively
undermines the simplicity of the original approach.

Spencer-Brown uses a colon for bracketing:

	 	 [: ()() (()()())]	 	 	 	 involution

This means to distribute en masse. The same distinction is needed to differentiate between several
power forms.

	

 	

 Spencer-Brown form	

	

 	

 Conventional semantics
	 	 ((a)())	 	 	 	 	 a + 0

	 	 ((a)():)	 	 	 	 	 a ^ 0

	 	 (()())	 	 	 	 	 2

	 	 (()():) = (((()))():)	 	 	 1 ^ 0

The ambiguity in effect introduces a new axiom, called Dominion, which is explored in the James
algebra. Unusually, the colon is a spatial operator, converting its container into an absorber,
similar to the way that infinity works in conventional number systems.

! 5

