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Abstract

Our understanding of a concept is tightly connected to the way we represent

that concept.  Traditionally, mathematics is presented textually.  As a

consequence novice errors, in elementary algebra for example, are due as much

to misunderstandings of the nature of tokens as they are to miscomprehensions

of the mathematical ideas represented by the tokens.  This paper outlines a

spatial algebra by mapping the structure of commutative groups onto the

structure of space.  We interact with spatial representations through natural

behavior in an inclusive environment.  When the environment enforces the

transformational invariants of algebra, the spatial representation affords

experiential learning.  Experiential algebra permits algebraic proof through

direct manipulation and can be readily implemented in virtual reality.  The

techniques used to create spatial algebra lay a foundation for the

exploration of experiential learning of mathematics in virtual environments.

1.  Introduction

How we think about mathematical concepts is often constrained by our

representation of those concepts.  Syntax and semantics (representation and

concept) are tightly connected.  The addition operation, for example, is

conceptualized as binary when written in linear text:   

x + y

To add three numbers, we must use two addition operators:

x + y + z

Column addition, however, reconceptualizes the addition operation to be

variary (one operator can be applied to an arbitrary number of arguments):

   w

   x

   y

+  z

----

  

Naturally, the addition algorithms and techniques taught to students differ

for the different representations.



The traditional representation of binary addition is one-dimensional.  There

are two locations for arguments, one on either side of the textual operator.

Column addition increases the dimension of representation to the plane;

digits of individual numbers are expressed horizontally, different numbers

are expressed vertically.  From a spatial perspective, the number of

arguments that can be added in one operation depends upon the dimension of

the representation.

In general, how we represent numbers is a matter of convenience.  For

learning mathematics (and for doing mathematics) it is often more convenient

to call upon visual interaction and natural behavior than it is to conduct

symbolic substitutions devoid of meaning.  Spatial algebra uses the three

dimensions of natural space to express algebraic concepts.  A higher

dimension of representation greatly simplifies the visualization and the

application of algebraic axioms.   Algebraic transformation and the process

of proof are achieved through direct manipulation of the three-dimensional

representation of the algebra problem.  

The difficulties children have when they begin to learn algebra are well

documented [9] [7] [17] [8] [4].  Spatial algebra addresses common errors

made by novice algebra students by permitting experiential interaction with

abstract representations.  Spatial representations enhance understanding

[11].  Concrete manipulation is known to be an effective teaching technique

[15] [1] [14].   

Virtual reality is a computer generated, multi-dimensional, inclusive

environment which can be accepted by a participant as cognitively valid [6].

VR teaching systems overcome the inconvenience of an insufficiently abstract

physical reality by combining mathematical abstraction with the intuition of

natural behavior.  The programmability of VR allows a curriculum designer to

embed pedagogical strategies into the behavior of virtual objects which

represent mathematical structures [2].  Using a VR presentation system, the

axioms of algebra can be, so to speak, built into the behavior of the world.

The visual programming community has developed taxonomies of visual

approaches [13].  The experiential approach to mathematical formalism

presented in this paper is sufficiently unique not to fit into existing

taxonomies of visual languages.  The approach of mapping formal operations

onto the topological structure of space itself is not diagrammatic, iconic,

or form-based.  Most fundamentally, experiential mathematics imparts

semantics onto the void (empty space).  Actively using the void is both

simple and conceptually treacherous [3].  The spatial techniques in this

paper are general and have been applied to several formal systems, including

elementary logic and integer arithmetic [3] [5].



2.  Spatial Algebra

The components of space which can be used for the representation of

mathematical concepts include:

--  empty space (the void),

--  partitions between spaces (boundaries, objects),

--  labeled objects which share a space, and

--  labeled objects which share a boundary (touch one another).  

This is sufficient structure for the expression of elementary algebra.  One

possible map from algebraic tokens to algebraic spaces is:

Constants:   

{ 1,2,3,...}  -->   { labeled-blocks }   

Variables:

{ x,y,z,...}  -->   { labeled-blocks }   

Operators:

{ + }         -->   { sharing-space }

{ * }         -->   { sharing boundaries }

Relations:

{ = }         -->   { partitions of space }

Examples of a spatial representation of the above map follow.  The appendix

to this paper contains a list of principles for designing spatial

representations.

Constant as labeled block:

3

Variable as labeled block:

x

Space sharing as addition:

3 + 2 = 5



Touching as multiplication:

3 * 2 = 6

A simple algebraic term:

2x + 3

The gravitational orientation of the typography (top to bottom of page) in

the above examples is not an aspect of spatial algebra, although

gravitational metaphors are useful for the representation of sequential

concepts such as non-commutativity.  As well, the sequencing implied by

stacked blocks is an artifact of typography;  stacks only represent groups of

objects touching in space.   

3.  Group Structure of Spatial Forms

Generally, spatial representation can be mapped onto group theory.  A

commutative group is a mathematical structure consisting of a set and an

operator on elements of that set, with the following properties:

--  The set is closed under the operation.

--  The operation is associative and commutative.

--  There is an identity element.

--  Every element has an inverse.

The integer addition and multiplication operators taught in elementary school

belong to the commutative group.

3.1  Commutativity

Spatial representation permits the implicit embedding of commutativity in

space.  The commutativity of addition is represented by the absence of linear

ordering of blocks in space (visualize the blocks in this example as floating

in space rather than in a particular linear order):

x + y = y + x



We intuitively recognize objects contained in a three-dimensional space as

ordered solely by our personal perspectives.  In contrast, typographical

objects are necessarily ordered in sequence by the one-dimensional nature of

text and by the two-dimensional nature of the page.   

Commutativity of multiplication can be seen as the absence of ordering in

touching blocks:

x * y = y * x

Again, in space there is no preferential ordering to touching objects:

3.2  Associativity

Associativity of addition is the absence of an explicit grouping concept in

space:

  (x + y) + z = x + (y + z)

The apparent visual grouping expressed by differences in metric distance

between blocks can be assigned a semantics of associativity (for example, add

closest objects first), or it can be ignored, permitting the operation

assigned to space to address multiple arguments in parallel.  From an

intuitive perspective, operations embedded in space apply to any number of

objects in that space.  Whatever grouping we use is a matter a choice and

convenience.  Parallel computers provide techniques for addressing all

objects at the same time.

Associativity of multiplication is the absence of an explicit grouping

concept in piles:

(x * y) * z = (x * z) * y



The apparent visual ordering of piles can be overcome by assuming that all

objects in a pile touch one another directly.  Rather than displaying stacked

objects, VR might present objects in piles as completely interpenetrating.

Every object in this non-physical representation is in contact with every

other object, forming a Cartesian product of touching objects.

3.3  Distribution

Precedence operations associated with the distributive rule are the most

common algebraic error for first year students [12] [4].  The representation

of distribution in spatial algebra is particularly compelling.  Generally,

the distributive law permits combining blocks with identical labels into a

single block with that label.  Conversely (read right to left), distribution

permits splitting a single block that touches separate piles into separate

but identical blocks touching each pile:   

ax + bx = (a + b)x

Blocks with identical labels are both singular and arbitrarily subdividable

in space.  This ability to arbitrarily divide and combine blocks with a

common name is the same as the ability to arbitrarily create duplicate labels

in a textual representation.  Changing the size and the number of occurrences

of a labeled block is easy in a virtual environment.

Any potential ambiguity between distributive idempotency and the use of space

as the addition operator is avoided by the effect of context on

interpretation.  Idempotency requires the context of touching blocks

(multiplication).  Addition requires the context of non-touching piles.

3.4  Identities

Zero is the identity element for addition.  The identity in the spatial

metaphor is the void;  identities are equivalent to empty space.

The additive identity:  

x + 0 = x

That is, zero disappears in space:



The multiplicative identity:

1 * x = x

The One block disappears only in the context of an existing pile.  A zero in

a pile makes the entire pile disappear:  

0 * x = 0

3.5  Additive Inverse

The inverse of a positive number is a negative number.  Negative numbers are

the most difficult aspect of arithmetic for elementary students. One way to

directly represent inversion is to create an inverter block.  Another way is

to create an inversion space; for example using "under-the-table" for

inverses.  Inverses can be represented in many ways: as inverters, as colors,

as orientations, as different spaces, as binary switches, as dividing planes,

as inside-out objects.

In this version of spatial algebra, piles are inverted by the inclusion of a

special inverter block:

Since a negative number can be seen as being multiplied by -1, the inverter

block is expressed as touching (multiplying) the pile which is inverted:

-x  = (-1) * x

The inverter block expresses subtraction as the addition of inverses,

x - x      is written as      x + (-x)



The additive inverse:

x + (-x) =  0

3.6   Calculus of Signs

The use of the inverter block for negative numbers introduces a calculus of

signs into the algebra of integers.  A sign calculus requires the explicit

introduction of the positive block:

The positive block is the inverse of the inverter block.  It introduces the

concept of polarity and the act of cancellation.  Numbers without signs are

usually assumed to be positive.  Making signs explicit removes this

assumption.  

The following rules of sign calculus assume each sign has a unit value

associated with it.

Additive cancellation in space:

Cardinality in space:

Multiplicative cancellation in piles:



Multiplicative dominance in piles:

The following example illustrates an inverter sign distributed across all

objects in a space:   

(-x) - y = -(x + y)

3.7   Multiplicative Inverse

Finally, division is the multiplicative inverse.  Again, there are many

possible ways to represent an inverse in a spatial representation.  Since the

traditional notation for fractions is primarily two-dimensional, it already

has many spatial aspects.  The division line that separates numerator from

denominator could be carried over to the spatial representation as a plane

dividing a pile into two parts.  Here however, the multiplicative inverse is

represented by inverse shading of the block label:

1/x

The multiplicative inverse:

x * 1/x = 1

One weakness with the choice to represent a reciprocal as differently shaded

labels is that composition of reciprocals -- for example 1/(1/x) -- is not

visually defined.  Choice of representation necessarily effects pedagogy.  It

is an empirical question as to which representations facilitate learning

algebraic concepts efficiently.

Fractions are the second most difficult area for students of arithmetic.  A

typical problem using fractions requires the application of the distributive

rule:     



   a/b + c/d = (ad + bc)/bd

4.  Factoring

Factoring polynomial expressions is equivalent to multiple applications of

distribution.  For instance:

   x^2 + 4x + 3 = (x + 1)*(x + 3)

One advantage of the spatial representation on the right-hand-side of this

equation is that both the factored and the polynomial forms are visible

concurrently.  Looking from the side, we see two completely touching spaces

which represent the factored form:

(x + 1) * (x + 3)

Looking down from the top, we see four piles which represent the polynomial

form:   

x^2 + 1*x + 3*x + 1*3

Here, the factored form is converted to the polynomial by slicing each

addition space through the middle.   



5.  Caveats

Experiential mathematics is quite new as a formalism.  The idea of mapping

semantics onto the void first appeared in a mathematical text that is widely

acknowledged as impenetrable [16].  Spatial algebra is an interpretation of

the abstract mathematics developed by Spencer-Brown in Laws of Form and by

Louis Kauffman at the University of Chicago [10].

The representational details of the spatial algebra presented here are, like

any choice of syntax, somewhat arbitrary.  The text lists many options, for

example, for the representation of inverses.  This representational freedom

can be constrained by empirical studies intended to determine which

particular representations are effective for task performance.  There is no

reason to believe that effective representations are generic.  More probably,

different individuals will prefer and understand different representations in

the context of different tasks.  One strength of VR is that it is completely

customizable to individual participants.  Still, the research to determine

which representations are effective has yet to be conducted.  In fact,

demonstrating that spatial algebra actually improves performance in high

school algebra remains as future research.

Significant components of a complete spatial mathematics have not been

included in this paper.  In particular, a compelling representation for

exponentiation is missing.  Spatial arithmetic has been assumed.  A technical

refinement is needed for the calculus of signs, to either remove cardinality

completely from signs, or embed it deeper, expressing "-" as "-1".  We also

need to consider representation of functions such as the logarithm and sine.

Spatial solutions to these shortfalls exist, but a completely integrated

spatial mathematics is not yet formulated.  

The weakest aspect of the proposed spatial  algebra is the representation of

three or more multiplied objects, x*y*z for example.  This form can be

represented by either completely interpenetrating blocks or by "blocks" with

complex shapes that twist around to touch all other blocks.  This problem

gets particularly difficult for multiplying several factored expressions, for

example:  (x + 1)*(x + 2)*(x + 3)

In general, the cubic blocks presented in this paper are misleading, since

they imply a Cartesian coordinate system.  In fact, the spatial

representation proposed here has no associated metric (or rather, the metric

is irrelevant to the mathematical formalism).  The treatment of space might

be improved by explicitly including a representation for the table which

blocks can be imagined to rest upon.

We also have little experience with animation of and interaction with spatial

forms in VR.  This paper presents the design phase of a wider study into the

utility of VR for mathematics education[18].



6.  Conclusion

Spatial representation provides a map to a wide range of new visual

languages.  The examples in this paper are expressed in a language of labeled

blocks.  The spatial rules, however, map just as easily onto people in a

room, toys in a box, salmon in streams, and bricks in a wall.

The techniques of spatial algebra and the display capabilities of virtual

environments have coevolved.  Spatial algebra is proposed as an experimental

approach for exploring the representation-dependent aspects of novice algebra

errors.  Virtual reality display systems are proposed as a straightforward

way to present spatial algebra as an experiential mathematical system.

During the next phase of this work, we will explore the pedagogical

characteristics of spatial representations in virtual reality.

7.  Appendix:  Principles of Spatial Mathematics

I use the term boundary mathematics to describe the collection of rules and

tools used to generate representations of spatial algebra.  Boundary

mathematics is general in that its principles can be applied to many

mathematical domains.  This paper, for instance, has implicitly assumed a

model of spatial integers.

The roots of boundary mathematics can be found in G. Spencer-Brown's

mathematical text Laws of Form.  Boundary mathematics is quite unique, since

it incorporates both the participant and the void into its formal structure.

This makes formal theorems sound somewhat like pop psychology.

General Principles

1.  Mathematics is the experience of abstraction.

2.  Experience is not a recording.  Representation is not reality.

3.  The void cannot be represented.

4.  Space requires participation.  To participate is to partition space, to

construct a boundary.

5.  Boundaries both separate and connect.

6.  Boundaries identify an intentional construction.

7.  Representation and meaning are different sides of the same boundary.

8.  Our body is our interface.



Mathematical Principles

9.  Operators, invariants, and identities can be embedded in space.

10. Multiplicity is generated by observation.

11. Commutativity is embedded in space, ordering is embedded in time.  All

virtual entities are asynchronous parallel processes.

12. Associativity is the choice of the participant.  All entities are

autonomous.

13.  Entities are both singular and plural in form, depending upon the

construction of the participant.  Entities with the same name are the same

entity.

14.  That which is common to every entity in a space is common to the space

itself, forming the ground of the space.

15. Touching spaces are in pervasive contact (Cartesian product).

16. Crossing a boundary inverts a space.  Inversion unites partitioned

spaces.

17. Normalized spaces are those equivalent to the void.  They can support

arbitrary grounds.
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