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James calculus uses three types of containers/boundaries to represent all types 
of numbers.  Several unique numerical concepts arise from this approach.  
Generalized cardinality applies to negative and fractional counts, as well as to 
integer counts.  The generalized inverse unifies subtraction, division, roots, 
and logarithms into a single concept and operation.  The James imaginary, J, 
removes all inverses by embedding them in an imaginary operation.  J can be used 
for numerical computation as an alternative to using inverse operations.

The non-imaginary part of this presentation closely follows Jeff James' 1993 
masters thesis under Dr. William Bricken at the University of Washington.

Boundary Units

Three containers define the types of numerical objects.  Configurations of these 
containers define numerical operations.  Similar to Kauffman numbers, rules for 
James forms apply independently to each space, regardless of nesting.  As well, 
all forms have a direct interpretation in standard notations, even during 
transformation steps.  This makes James numbers easy to understand.   However 
the routes that they take to achieve computation are generally very unusual.

	      James Form	 	 	 Interpretation

	 	 ( )	 	 	 	 e^0 = 1
	 	 [ ]	 	 	 	 ln 0 = negative infinity
	 	 < >	 	 	 	 negative 0 = 0

Each elementary unit container is empty, forming the ground, or constant, forms.  
Each elementary container can be interpreted as a ground object, and as the 
operation of containing nothing.  In that sense, the void serves as the 
fundamental ground of all objects and operations.  

The round container, ( ), raises e to the power of its contents.  When it is 
empty, the contents are zero, and the value of the boundary is e^0, which can 
also be interpreted as the object one.

The square container, [ ], takes the logarithm of its contents, and is the 
inverse of the round boundary.  

The angle container, <>, converts its contents to additive inverse; it 
multiplies by -1.
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Boundary Operators

Each container operates on its contents with the following semantics:

	      James Form	 	 	 Interpretation

	 	 (A)	 	 	 	 e^A
	 	 [A]	 	 	 	 ln A
	 	 <A>	 	 	 	 - A	 (generalized)

The exponent and logarithm transforms can be in an arbitrary base.  Let the base 
be represented by #.  Then the following remains true:

	 	 ( )	 	 	 	 #^0 = 1
	 	 [ ]	 	 	 	 log# 0 = negative infinity

	 	 (A)	 	 	 	 #^A
	 	 [A]	 	 	 	 log# A

The base of natural logarithms, e, is most convenient as a specific choice, 
since many irrationals are defined in terms of e.

Integers

James integers are expressed in stroke notation.  There is no provision for a 
power-oriented notation for integers, however the calculus itself uses power 
transformations extensively.

	 	 0	 	 	 	 void
	 	 1	 	 	 	 ( )
	 	 2	 	 	 	 ( )( )
	 	 3	 	 	 	 ( )( )( )  
	 	 ...

Varieties of numbers occur through configurations of the three containers, with 
empty containers forming a computational ground.  The calculus emphasizes 
algebraic forms, and is clumsy for arithmetic evaluation.

Since stroke representation is rather clumsy, we will use decimal numbers to 
abbreviate stroke numbers throughout this section.
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Algebraic Operations

Addition is sharing space.  All forms inside the same container, that is, all 
forms sharing a space, are joined by implicit addition.  Multiplication and 
power are specific configurations of ( ) and [ ] containers, both of which keep 
track of the appropriate exponential or logarithmic space.  Multiplication is 
adding logarithms then converting back the non-logarithmic space.  Power is 
adding the loglog form of the base to the log of the exponent.

	 	 Addition	 	 A+B	 	 	     A   B	

	 	 Multiplication	 A*B	 	 	  ( [A] [B])	

	 	 Power		 	 A^B	 	 	 (([[A]][B]))

The round and square boundaries can be read as exponents and natural logs, 
providing James forms with a direct interpretation:

	 Operation	 	 James Form	 	 Interpretation

	 	 A+B	 	     A  B	 	 A + B

	 	 A*B	 	   ([A][B])	 	 e^(ln A + ln B) =
	 	 	 	 	 	 	 e^ln A * e^ln B  
	 	 	 	 	 	 	 A * B

	 	 A^B	 	 (([[A]][B]))	 e^(e^(lnln A + ln B)) =
	 	 	 	 	 	 	 e^(e^lnln A * e^ln B)  
	 	 	 	 	 	 	 e^((ln A) * B)  
	 	 	 	 	 	 	 e^(ln A^B)   
	 	 	 	 	 	 	 A ^ B

It is fair to say that round and square boundaries are simply a convenient way 
write complex exponents, since they introduce no new transformation rules.  
Similar to Spencer-Brown numbers, James notation could use a single container by 
indexing the depth of containments:  even is exponent ( ), odd is logarithm [ ].  
Similar to Kauffman numbers, a fourth boundary type could be used for a depth-
oriented positional notation.

Inverse Operations 

Subtraction is sharing a space with an additive inverse form, <B>.  Division is 
sharing deeper space with a multiplicative inverse form, <[B]>.  Taking a root 
is sharing an even deeper space with the multiplicative inverse form.
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	 	 Subtraction		 A-B	 	 	     A  < B >

	 	 Division	 	 A/B	 	 	  ( [A] <[B]>)

	 	 Root	 	 	 A^(1/B)	 	 (([[A]]<[B]>))

The angle container, <>, serves as the inversion concept for all inverse 
operations.  The operations are distinguished by which forms are contained in 
angle boundaries, and by the depth of nesting of exp-log transforms.

Reduction Rules  (Axiomatic basis)

Computation is achieved through application of three reduction rules:

	 	 ([A]) = [(A)] = A		 	 	 Involution
	 	
	 	 (A [B]) (A [C]) = (A [B C])	 	 Distribution

	 	 A <A> = void	 	 	 	 Inversion

The distribution rule in standard notation would read:

	 	 e^(A+ln B) + e^(A+ln C) = e^(A+ln(B+C))

	 	 	 Proof:

	 	 	 	 e^(A+ln B) = (e^A)*(e^ln B) = B*(e^A)
	 	 	 	 e^(A+ln C) = (e^A)*(e^ln C) = C*(e^A)

	 	 	 	 B*(e^A) + C*(e^A) = (e^A)(B+C)
	 	 	 	 	 	 	 = (e^A)(e^ln(B+C))
	 	 	 	 	 	 	 = e^(A + ln(B+C))

Alternatively, we could convert the distributive rule into a multiplicative 
rather than an additive form:

	 	 ( A [B]) ( A [C]) = ( A [B C])	 	 additive

	 	 ([A][B]) ([A][C]) = ([A][B C])	 	 multiplicative

	 	 	 which reads more conventionally as:

	 	 	 	 (A*B)+(A*C) = A*(B+C)
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	 	 	 and more unconventionally as exponents and logs:

	 	 	 	 e^(ln A + ln B) + e^(ln A + ln C) = e^(ln A + ln(B+C))

Note that the multiplicative representation uses [A] rather than A.  This is not 
a significant difference, since any form can be bounded by [ ] due to 
involution:

	 	 A = [(A)]

Algebraic Proof

James calculus is an algebraic, equational system.  The primary transformations 
are substitution and replacement of equals for equals.  Proof consists fo a 
series of transformations from one form into another.

The standard substitution strategies are all available in the boundary calculus.  
Given an equation A=?=B, the two forms can be demonstrated to be equal by:

	 	 Convert one form into the other form.

	 	 Convert both forms into the same third form

	 	 Standardize the equation to a void-equivalent and reduce to void.

To standardize to a void-equivalent, we place all terms on one side of the 
equation, leaving the other side void.  Unlike conventional algebra, there is 
only one operation, Inversion, to move all terms to one side of an equation:

	 	 A     = B

	 	 A <B> = B <B> = void

The Form of Numbers

All conventional numbers are represented as nested configurations of containers.  
These configurations specify both the pattern of a particular type of number, 
and the sequence of exp-log transformations necessary to compute that number.

	 Type	 	  Standard form	 	 James form

	 zero	 	 	 0	 	 	 void

	 one	 	 	 1	 	 	 ()
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	 natural	 	 n	 	 	 ()()..n = ([n][()])

	 negative integer	 -n	 	 	 <()()..n> = <([n][()])>

	 rational	 	 m/n	 	 	 ([m]<[n]>)

	 irrational	 	 a^-b	 	 	 (([[a]]<[b]>))

	 transcendental	 e	 	 	 (())

	 	 	 	 PI	 	 	 ([[<()>]] ([[<()>]] <[2]>))

	 complex 	 	 i	 	 	 (([[<()>]] <[2]>))

	 	 	 	 a + bi	 	 a ([b] ([[<()>]]<[2]>))

	 infinity	 	 inf	 	 	 <[]>

The Form of Numerical Computation

In the container representation, the relationships between numerical operations 
become overt.  Essentially, any operation is applying the pair (...[...]...) to 
a particular part of the existing form.  

Addition begins with no boundaries.  Like stroke arithmetic, addition (and its 
inverse subtraction) is putting forms in the same space.  Any space can be 
considered to be contained by a ([...]) pair.

Multiplication (and its inverse division) involves converting to natural logs 
with [...] and then back to powers of e with (...).  

Power (and its inverse root) is another application of the (...[...]...) form, 
this time asymmetrically.

	 	 addition	 	     A    B
	 	 multiplication	  ( [A]  [B] )
	 	 power		 	 (([[A]] [B] ))

	 	 subtraction		     A  < B >
	 	 division	 	  ( [A] <[B]>)
	 	 root	 	 	 (([[A]]<[B]>))
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The following forms are spread out to illustrate how each operator is a (...
[...]...) elaboration of the previous form.  The representation of each 
operation is the accumulation of new forms and forms above.

	 	 addition	 	     A    B
	 	 multiplication	  ( [ ]  [ ] )
	 	 power		 	 ( [   ]      )

	 	 subtraction		     A  < B >
	 	 division	 	  ( [ ]  [ ] )
	 	 root	 	 	 ( [   ]      )

The placement of containers reflects the properties of each operator.  Both 
forms are free of containment for commutative addition.  Both forms are enclosed 
for commutative multiplication.  One form is enclosed for power, it is not 
commutative.  Inversion is generic, the second form is simply inverted in all 
cases, creating the non-commutative inverse operations.

Note also that

	 	 A+B+C		 	 	 A B C

	 	 A*B*C		 	 	 ([A][B][C])

	 	 (A*B)/(C*D)		 	 ([A][B]<[C][D]>)

Logarithms

The exponent function exp, is the inverse of the logarithm function, log.

	 	 log base e	 	 ln n	 	 	    [n]

	 	 exp base e	 	 e^n	 	  	    (n)

	 	 log base b	 	 logb n	 	  ([[n]]<[[b]]>)

	 	 exp base b	 	 b^n	 	 	 (( [n]  [[b]] ))

Setting the logarithmic base to e results in the appropriate reduction:

	 loge n =  ([[n]] <[[(())]]>)	 	 	 	 	 substitute
	           ([[n]] <[  ()  ]>)	 	 	 	 	 involution
	           ([[n]] <        >)	 	 	 	 	 involution
	           ([[n]]           )	 	 	 	 	 invert zero
	             [n]	 	 	 	 	 	 	 involution
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Similarly, setting the exponential base to e results in the appropriate 
reduction also.

	 e^n    = (( [n]   [[(())]] ))		 	 	 	 substitute
	 	    (( [n]            ))		 	 	 	 involution
	 	    (   n              )		 	 	 	 involution

Log and exp base b are inverses:

	 expb[logb n] = n

	 	 (([ ([[n]]<[[b]]>) ][[b]]))	 	 	 	 substitute
	 	 ((   [[n]]<[[b]]>   [[b]]))	 	 	 	 involution
	 	 ((   [[n]]               ))	 	 	 	 inversion
	 	        n	 	 	 	 	 	 	 involution

Using the spread out form, we can see the relationship between logs and other 
operations.  Taking a log violates the (...[...]...) involution form, moving 
instead into a logarithmic space.  

	 	 subtraction		     A  <  B  >
	 	 division	 	  ( [ ]   [ ]  )
	 	 log base B	 	   [   ] [   ] 

	 	 addition	 	     A     B
	 	 multiplication	  ( [ ]   [ ]  )
	 	 exp base B	 	 (       [   ]  )

Finally, in boundary notation, the standard transforms for logarithms translate 
into an application of Involution.

	 Conventional notation	 	 	 Boundary form

	 ln(A*B) = ln A + ln B	 	 	 [([A][B])] = [A][B]

	 ln(A/B) = ln A - ln B	 	 	 [([A]<[B]>)] = [A]<[B]>

	 ln(A^B) = B ln A	 	 	 	 [(([[A]][B]))] = ([[A]][B])

	 ln(n+1) = ln n + ln (n+1)/n	 	 [n 1] = [n][([n 1]<[n]>)]

	 log10 A = (ln A)/(ln 10)	 	 ([[A]]<[[10]]>) = ([[A]]<[[10]>)
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Note that the conversion between bases is explicit in the representation;  the 
form of a logarithm to base N specifies the transformations to convert between 
that base and the natural base.

Generalized Inverse

The generalized inverse treats subtraction, division, roots, and logs as the 
same operation in different contexts.  Below, the spacing between characters is 
used to emphasize the communality of forms.

	 Subtraction

	 	 -1	 	 	        < ( ) >
	 	 -B	 	 	        <  B  >
	 	 A-B	 	 	     A  <  B  >
	 	 A+(-B)	 	     A  <  B  >

	 Division

	 	 1/1	 	 	  (     <[( )]>)
	 	 1/2	 	 	  (     <[ 2 ]>)
	 	 1/B	 	 	  (     <[ B ]>)
	 	 A/B	 	 	  ( [A] <[ B ]>)

	 Root

	 	 A^(1/2)	 	 (([[A]]<[ 2 ]>))
	 	 A^(1/B)	 	 (([[A]]<[ B ]>))
	 	 A^-B	 	 	 (([[A]] [<B>] ))

	 Log

	 	 ln A	 	 	    [A]
	 	 logB A	 	  ([[A]]<[[B]]>)
	 	 expB A	 	 (( [A]  [[B]] ))

Dominion

An empty square container, [], represents the logarithm of 0, which is negative 
infinity.  The square basis provides a natural representation of infinity which 
can be used in the course of computation.  The behavior of infinity is specified 
by the following theorems.
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	 Name	 	 	 	 Form	 	 	 	 Interpretation

	 Dominion	 	  	 A [ ]   = [ ]	 	 -inf + A = -inf

Negative infinity absorbs all forms sharing its space.  A variant of dominion 
converts the negative infinity to a void:

	 	 	 	 	 (A [ ] ) = void	 	 e^(A + -inf) = 0

Positive infinity is the inversion of negative infinity:

	 	 <[]> = inf

Positive infinity also absorbs all forms with its space, except for two 
(negative infinity and the imaginary J).  The reasons for this are discussed in 
the later section on infinities.

	 Positive Dominion		 A <[]> = <[]>	 	 A + inf = inf

	 	 	 	 where A =/= [] and A =/= [<()>].

	 	 Proof:

	 	 	 A [ ] = [ ]

	 	 	 (A [ ]) (A [ ]) = (A [ ])	 	 	 distribution, B=C=0

	 	 	 Let X = (A [ ])

	 	 	 	 X X = X

	 	 	 	 X = void	 is the only solution

	 	 	 	  (A [ ])  = void
	 	 	 	 [(A [ ])] = [ ]	 	 	 	 ln both sides
	 	 	 	   A [ ]   = [ ]	 	 	 	 involution

	 	 	 A <[]> = <[]>

	 	 	   A  <[]>
	 	 	 <<A>><[]>	 	 	 	 	 	 inverse cancel
	 	 	 <<A>  []>	 	 	 	 	 	 inverse collect
	 	 	 <     []>	 	 	 	 	 	 dominion
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Inverse Theorems

These theorems permit transformation of the inversion container, <>.

	 	 Name	 	 	 Form	 	 	 	 	 Interpretation

	 Inverse Collection	 <A><B> = <A B>	 	 	 (-A)+(-B) = -(A+B)

	 Inverse Cancellation	 <<A>> = A	 	 	 	 --A = A

	 Inverse Promotion	(A  [<B>] ) = <(A  [B] )>	    -B(e^A) = -(Be^A)
	 	 	 	 (A <[<B>]>) = <(A <[B]>)>	   (e^A)/-B = -(e^A/B)

	 Proof of theorems:

	 	 <A><B>
	 	 <A><B><A B> A B
	 	       <A B>   

	 	 <<A>>
	 	 <<A>><A> A	 	 	 	 	 	 	 	 inversion
	 	          A	 	 	 	 	 	 	 	 inversion

	 	 (A [<B>])
	 	 (A [<B>]) <(A [B])> (A [B])	 	 	 	 	 inversion
	 	 (A [<B> B]) <(A [B])> 	 	 	 	 	 	 distribution
	 	 (A [     ]) <(A [B])> 	 	 	 	 	 	 inversion
	 	             <(A [B])> 	 	 	 	 	 	 dominion

Examples

Here are some examples of proof of other (unnamed) theorems:

	 	 -ln(e^A) = -A = ln(e^-A)	 <[(A)]>
	 	 	 	 	 	 	 <  A  >	 	 	 involution
	 	 	 	 	 	 	 [(<A>)]	 	 	 involution
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	 	 A/A = 1	 	 	 	 ([A] <[A]>)
	 	 	 	 	 	 	 (         )		 	 inversion

	 	 1/(1/A) = A		 	 	 (<[ (<[A]>) ]>)
	 	 	 	 	 	 	 (<   <[A]>   >)	 	 involution
	 	 	 	 	 	 	 (     [A]     )	 	 inverse cancel
	 	 	 	 	 	 	        A       	 	 involution

	 	 e^A * e^-A = 1	 	 	 ([(A)][(<A>)])
	 	 	 	 	 	 	 (  A    <A>  )	 	 involution
	 	 	 	 	 	 	 (            )	 	 inversion

	 	 A*(1/B) = A/B	 	 	 ( [A][(<[B]>)])
	 	 	 	 	  	 	 ( [A]  <[B]>  )	 	 involution

	 	 1/(A^B) = A^-B	 	    (<[(([[A]] [ B ] ))]>)
	 	 	 	 	 	    (<  ([[A]] [ B ] )  >)	 involution
	 	 	 	 	 	    (   ([[A]] [<B>] )   )	 promote

	 	 1/A + 1/B = (A + B)/AB	 	

	 	 (<[A]>)(<[B]>) =?= ([A B] <[A][B]>)

	 	 	 (<[A]>) = ([B]<[B]><[A]>) = ([B]<[A][B]>)		 inversion
	 	 	 (<[B]>) = ([A]<[A]><[B]>) = ([A]<[A][B]>)		 inversion

	 	 	 (<[A]>)(<[B]>) = ([B]<[A][B]>)([A]<[A][B]>)	 substitute
	 	 	 	 	    = ([A B]<[A][B]>)	 	 	 distribution

Generalized Cardinality

Multiple reference can be explicit (a listing) or implicit (a counting).  n 
references to A can be abstracted to n times a single A, in both the additive 
and the multiplicative contexts.  The form of cardinality is:

	 	 	 Form	 	 	 	 Interpretation

	 	 	 ([A][n])	 	 	 	 A*n

	 Adding A to itself n times is the same as multiplying A by n:

12



	 	 A..n..A =  ([A][n])

	 Multiplying A by itself n times is the same as raising A to the power n:

	 	 ([A]..n..[A]) = (([[A]][n]))

Negative cardinality cancels or suppresses positive occurrences.  The form of 
negative cardinality is

	 	 	 ([A][<n>])	 	 	 	 A*(-n)

	 Adding A to itself -n times is the same as multiplying A by -n, and is 
also the same as
	 adding -A to itself n times:

	 	 A..<n>..A = ([A][<n>]) = <([A][n])> = ([<A>][n]) = <A>..n..<A>

	 Dividing by A n times is the same as multiplying A by itself -n times.

	 	 (<[A]>..n..<[A]>) = (([<[A]>][n])) = (<([[A]][n])>) 
	 	 	 	 	 = (([[A]][<n>])) = ([A]..<n>..[A])

	 Multiplying -A by itself n times is the same as raising -A to the nth 
power:

	 	 ([<A>]..n..[<A>]) = (([[<A>]][n]))

	 Here is a proof that negative cardinality cancels positive cardinality:

	 	 ([A][n]) ([A][<n>])	 	 	 (n*A)+(-n*A) = 0

	 	 ([A][n <n>])	 	 	 	 	 	 distribution
	 	 ([A][ ])	 	 	 	 	 	 	 inversion
	 	 void	 	 	 	 	 	 	 	 dominion

Fractional cardinality constructs fractions and roots.  The form of fractional 
cardinality is:

	 	 	 ([A]<[n]>)	 	 	 	 A*(1/n)

	 Adding the fraction A/n to itself n times yields A.  Here is a proof that 
fractional cardinality accumulates into a single form:
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	 	 ([A]<[n]>)..n..([A]<[n]>)	 	 (A/n) +..n..+ (A/n) = A

	 	 ([([A]<[n]>)][n])		 	 	 	 	 cardinality
	 	 (  [A]<[n]>  [n])		 	 	 	 	 involution
	 	 (  [A]          )		 	 	 	 	 inversion
	 	     A		 	 	 	 	 	 	 involution

	 Multiplying the fraction n/A by itself 1/n times yields 1/A:

	 	 ([n]<[A]>)..1/n..([n]<[A]>)	 	 (n/A)*(1/n)= 1/A

	 	 ([([n]<[A]>)][(<[n]>)])		 	 	 	 cardinality
	 	 (  [n]<[A]>    <[n]>  )		 	 	 	 involution
	 	 (     <[A]>           )		 	 	 	 inversion

Broadening the Distributive Axiom

Addition of complex fractions requires a broader distributive law, here 
expressed as several new theorems:

	 (A  [B] ) (A  [C] ) = (A [B C])	 	 	 	 wholes

	 (A  [B] ) (A <[C]>) = (A [B (<[C]>)])	 	 	 whole + fraction

	 (  <[B]>) (  <[C]>) = ([B C] <[B][C]>)	 	 	 reciprocals

	 (A <[B]>) (A <[C]>) = (A [B C] <[B][C]>)	 	 	 reciprocals * A

	      B    (  <[C]>) = ([([B][C])( )] <[C]>)	 	 compound fraction

	 (A  [B] ) (D <[C]>) = ([(A [B][C])(D)] <[C]>)	 	 complex fraction

	 (A <[B]>) (D <[C]>) = ([(A [B])(D [C])] <[B][C]>)	 fractions

	 Some proofs:

	 	 (<[A]>        ) (<[B]>        )	 	 	 reciprocals lhs
	 	 (<[A]>[B]<[B]>) (<[B]>[A]<[A]>)	 	 	 inversion
	 	 ( [B] <[A][B]>) ( [A] <[A][B]>)	 	 	 inverse collect
	 	 ([A B]<[A][B]>)	 	 	 	 	 	 distribution

	 	 (A   <[B]>  ) (A   <[C]>  )	 	 	 	 whole+fraction rhs
	 	 (A [(<[B]>)]) (A [(<[C]>)])	 	 	 	 involution
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	 	 (A [(<[B]>)       (<[C]>)])	 	 	 	 distribution
	 	 (A [([B C]<[B][C]>)])	 	 	 	 	 reciprocals
	 	 (A   [B C]<[B][C]>  )	 	 	 	 	 involution

	 	 (  A <[B]>        ) (  A <[C]>        )	 	 whole+fraction rhs
	 	 (  A <[B]>[C]<[C]>) (  A <[C]>[B]<[B]>)	 	 inversion
	 	 (  A [C]  <[B][C]>) (  A [B]  <[B][C]>)	 	 inverse collect
	 	 ([(A [C])]<[B][C]>) ([(A [B])]<[B][C]>)	 	 involution
	 	 ([(A [C]) (A [B])] <[B][C]>)	 	 	 	 distribution
	 	 ([(A [B       C])] <[B][C]>)	 	 	 	 distribution
	 	 (  A [B       C]   <[B][C]>)	 	 	 	 involution

	 	     B             (    <[C]>)		 	 	 compound rhs
	 	 (  [B]          ) (    <[C]>)		 	 	 involution
	 	 (  [B][C]  <[C]>) (    <[C]>)		 	 	 inversion
	 	 ([([B][C])]<[C]>) ([()]<[C]>)		 	 	 involution
	 	 ([([B][C])          ()]<[C]>)		 	 	 distribution

	 	 (  A [B]          ) (  D   <[C]>)	 	 	 complex fraction rhs
	 	 (  A [B][C]  <[C]>) (  D   <[C]>)	 	 	 inversion
	 	 ([(A [B][C])]<[C]>) ([(D)] <[C]>)	 	 	 involution
	 	 ([(A [B][C])          (D)] <[C]>)	 	 	 distribution

James Calculus Unit Combinations

These unit combinations identify stable, irreducible forms in this calculus.  
Thus, they expose the representational and interpretive basis of numbers.

	 	 Form	 	     Value	   Interpretation

	 Void form	 	 	 0	 	 0

	 	 The void initializes the system with a zero concept, {0}.

	 Single unit forms

	 	 ()	 	 	 1	 	 e^0
	 	 []	 	 	 -inf	 	 ln 0
	 	 <> = void	 	 0	 	 -0

	 	 The single units generate {1, -inf}.
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	 Two unit combinations

	 	 (<>) = ()	 	 1	 	 e^-0
	 	 (())	 	 	 e	 	 e^e^0 = e^1
	 	 ([]) = void		 0	 	 e^(ln 0) = e^(-inf)

	 	 [<>] = []	 	 -inf	 	 ln -0 = ln 0 = -inf
	 	 [()] = void		 0	 	 ln e^0 = ln 1 = 0
	 	 [[]] = <[]>		 inf	 	 lnln 0 = ln -inf = ln-1 + ln inf

	 	 <<>> = <>	 	 void	 	 --0 = 0
	 	 <()>	 	 	 -1	 	 -e^0
	 	 <[]>	 	 	 inf	 	 --inf = inf

The two-unit combinations generate {-1, e, inf}.

Three unit combinations

	 	 <([])> = <[()]> = ([<>]) = [(<>)] = 0

	 	 (<[]>) = <[]>	 	 	 e^inf = inf

	 	 [<()>]	 	 	 	 J, the imaginary ln-1

The only three unit combination of all three containers which does not reduce is 
imaginary.  There are 3 additional stable three unit combinations which contain 
more than one instance of the unit boundary:

	 	 	 <(())>	 	 -e

	 	 	 (<()>)	 	 e^-1 = 1/e

	 	 	 ((()))	 	 e^e

Thus the three unit stable forms generate {-e, 1/e, e^e, ln-1}

Stable Forms

Any representation in a boundary system which is stable, in that no more 
reductions are possible, must represent a number.  The tableau of stable unit 
forms, independent of the base for logs and exponents, recapitulates the 
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coevolution of form and concept in this system.  This analysis is similar to 
that of examining the void case of the transformation rules.  

Let # represent the base of the exp-log forms.  Level refers to the number of 
containers in a form.

	 Level		 Stable forms	 	 	 Interpretation

	   0	 	   void	 	 	 	 	 0

	   1	 	   ()  []	 	 	 	 	 1  -inf

	   2	 	  <()>  (())  <[]>		 	 	 -1  #  inf

	   3	 	 <(())>  (<()>)  ((()))  [<()>]	 -#  1/#  #^#  log# -1

The origin is the void, which takes the additive unit value of 0.  1 and -inf 
are built in as the initial distinctions from the void.  The troublesome 
concepts of infinity and inversion are confounded at level 1, and disambiguated 
at level 2.  The arbitrary base unit # is introduced at level 2 and articulated 
through all inverse operations at level 3.  As defined, # cannot equal any of 
{0,1,-1,inf,-inf} since each of these has a different stable pattern.  These 
forbidden base values are also anchored by the definition of the exp-log 
functions, with these relationships:

	 	 log# 1 = 0	 	 	 	 #^0 = 1

	 	 log# 0 = -inf	 	 	 #^-inf = 0

	 	 log# inf = inf	 	 	 #^inf = inf

	 	 log# # = 1	 	 	 	 #^1 = #

These relationships indicate points in the log-exp functions which are 
independent of base.

Invalid bases can be assigned a meaning by treating them as imaginary.  The 
equation which permits movement between imaginary and real logarithms is

	 	 #^(log# x) = x

We can elect to interpret this equation as valid, again independent of the 
actual base.  Thus # could any form, including the forbidden ones.  The James 
imaginary, ln –1, or [<()>] in boundary form, can be used to define logarithms 
of negative numbers.
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