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-, X, +) IN THE ICONIC CALCULATOR

Boundary integers are collections of indistinguishable units within a common
container. These tally collections can be reduced by grouping to a depth-notation
form that supports any base system.

Base-2 and base-10 are illustrated.

BOUNDARY RULES

o ..o = (o GROUP/unGROUP
(AB) = (AB) MERGE /unMERGE
O ) = CANCEL
( ) = EMPTY
[A] highlight for prepare to unGROUP

(A}{B) highlight for prepare to unMERGE

TRANSCRIBE FROM STANDARD ARITHMETIC

defines base
manages base
negative/positive numbers
deletes empty containers

A+tB == AB PUT TOGETHER (Additive Principle)

AXxB == [B eA] SUBSTITUTE B for ® in A (Mult Principle)
A+B ==> [eBA] SUBSTITUTE e for B in A

* highlight for substitutions in multiply/divide

[X Y Z] shorthand notation for Substitute X for Y in Z.

SPECIFICS FOR TALLYS AND GROUPS

o0 —
0000000000 -—
c = A B
-C = -A -B
0 ==>
1 ==> [ ]
2 ==> 00 —
3 ==> e00 =
4 => 0000 =
-1 => ¢
-2 => 00 =
-3 ==> 000 =
—4 ==> 0000 =

(®
(®

(®
(o) o
(o)(®

€D
) ¢
€ICD)

D)

(00

GROUP base 2
GROUP base 10

SPLIT/unSPLIT (sum less than base)
SPLIT/unSPLIT (sum less than base)

(e

()]




Capital Letter Notation: The capital letters in MERGE stand in place of any
unit or bounded form, so long as one exists. Within the boundary rules,
variables cannot be void. A capital letter used during transcription (not
transformation) can stand in place of any unit or bounded form, or it can be
void since void is substituted for conventional zero during transcription.

Model

The model is that arithmetic operations are easy/trivial. Maintaining a base
system takes effort. The base system is a grouping mechanism that collects
groups of a specified size and puts them into a container. The triviality of
arithmetic is expressed by three principles:

ADDITIVE PRINCIPLE: A sum looks like its parts.
SUBTRACTIVE PRINCIPLE: Subtraction cancels polar units.

MULTIPLICATIVE PRINCIPLE: Multiplication is substitution of groups for units.

ARITHMETIC TRANSCRIPTION
Basel is tally arithmetic with no grouping. In basel, the engine uses three rules:
A+B ==> AB Put into Same Container
Addition/Subtraction is transcribed into PUT INTO SAME CONTAINER. PUT INTO SAME
CONTAINER is more of a parsing step than a rule. “A” and “B” stand in place of
any collection of dots/marks or nothing at all. PUT works for any kind of form,
including positive and negative units and boundary integers. The container is
often implicit as the display space framed by the typographical page or by the
indentation of a figure.

O @ == Cancel Opposites

CANCEL OPPOSITES achieves subtraction. 1It’s in boundary notation cause “N + -N”
is not quite right.

AxB == Substitute B for each unit in A
Using the shorthand notation for substitution,

axb == [b ® a] Substitute

a+b == [ b a] Substitute



SUBSTITUTE achieves multiplication and division.

These transcription rules are more like physical interpretations than arbitrary
manipulations. The convert the abstract operations of arithmetic into
physically realizable actions.

BASE SYSTEM RULES

In any base other than 1 (eg BASE 2 and BASE 1@dots) two additional “clean up”
rules implement and manage depth-value notation.

e ... 0 —— (® Group

GROUP achieves construction of a base. It can occur anywhere there is a
sufficiently large group. The ellipsis stands in place of the number of units
required to form a base group. So

oo —=> (o) Group BaseZ2
000000000 - (o Group Basel@

Boundary forms accommodate any base, and also support mixed bases within the
same form (this occurs in division).

(A(B) ==> (A B) Merge Boundaries

MERGE BOUNDARIES implements depth-value bookkeeping by maintaining the right
order of magnitude (defined by the base) for each unit. MERGE is also called
COMMON BOUNDARIES CANCEL. This rule triggers whenever two bounded objects share
the same container, at any depth of nesting. “A” and ”B” stand for any content
but not no content. In boundary arithmetic, there are no “empty” containers.

Almost all of the computational work is in maintaining a base system. For hand
manipulation of basel@ dots, students need to know how to make groups of ten.
This requires five pattern rules. The shape of dot configurations is an open
design question.

° eocccceee - (o)
1) eo0c00eee - (o)
(1 1] eoo000ee -——> (o)
(111 eeccee - (o)
00000 o000 -——> (o)



Addition/Subtraction of Digits

When common digits are introduced, they come with a price. Digits permit groups
of units to the symbolized abstractly, and any symbolic abstraction comes with a
load on memory. In particular, digits require memorization of the digit
addition and multiplication tables. In conventional arithmetic, these are 10x10
tables, with many symmetries to reduce the number of entries at the cost of
memorizing other abstractions.

The representation used by the Iconic Calculator makes many of these symmetries
invisible.

-- since forms are in space, there is no commutativity (100 -> 55)
-- since there is no zero, there are no add-zero rules ( 55 -> 45)
-- with the GROUP operation, no additions are more than 10 ( 45 -> 25)

For example, 8 9 = 8 2 7 = ()7
To use digits, students need to know 25 addition facts.
1+1 1+2 1+3 1+4 145 1+6 1+7 1+8 149
242 2+3 244 2+5 2+6 247 2+8
343 3+4 345 3+6 3+7

4+4 4+5 4+6
5+5

These 25 facts subdivide into
-- 5 add-to-ten facts (along the right side)

-- 9 add-one facts (along the top)
-- 11 digit split/unsplit facts

The other memory intensive skill is management of place value notation. This is
fully taken care of by MERGE BOUNDARIES and GROUP into tens.

For example, 57+89 = 146

GB)7 9 transcribe

GHadg 79 linear

(5 8)Y7 9 merge

(5537360 split optionally (32 8)6 19
(L 3) (Do group

(W3 Do merge

( 4 ) 6 unsplit



Note that “carrying” is GROUP followed by MERGE. Each container space 1is
independent of the others, so that all operations within specific containers can
occur in parallel.

Subtraction requires splitting digits to match positives and negatives in each
space. This results in containers that may contain positives mixed with
containers that contain negatives. A “borrowing” transformation is need to
reduce the mixed notation. Borrowing is running MERGE and GROUPS backwards,
i.e. UNMERGE and UNGROUP. The “10” shows up as two numerals, one of which
CANCELS the outer negatives. Eg,

C 4 D

G D split
ECONED) unmerge
(3) 10 ungroup

Example, 84 - 19:

8 4 (-1 -9 transcribe

8 (-1 4 -9 linear

@& -1 4-9 merge

(71 -1) 4 -4 -5 split to cancel x 2
7 ) -5 cancel

(6 1) -5 split

(c) (L -5 unmerge

) 55 -5 ungroup

() 5 cancel

Multiplication via Substitute

Multiplication requires collections to be replicated. This is simple in Base-1
and requires management in other bases. Base-10-unit examples:

3x2 ee x eee [eee o oo] ——> oo oo

ox4 000000 X 0000 [eeee o eoco0e]| ——> oceee coee coee
0000 0000 0000
==> (e)ee(e)ee ——> (e0)eeee

A base-2 example:

5: ((e))e 7. ((e)e)e
5%¥7: [7 e 5] Wy 7 mixed notation
7*%5: [5 e 7] ((5) 55 mixed notation



G = group base-2 M = merge S = substitute L = linear artifact

5*7: substitute 7 for e in 5

(C
C
(C
(C
C
(C
C
C

((e)e)e 1} {{e)e)e
((e)e)e e)e)e
((ede} {o) )e)e
((ede o) )e)e
((e} {o) ) )e)e
(e o)) )e)e
(C (D)) )e)e

7*5: substitute 5 for e in 7

C
C
(C
C
C
(C
C
C
(C
C

((®d)e } {(®) de } {( @) De
((e)d)e (o) ) (@) )e
O {e)e} { @)e)e

((® e)e e)e)e
(® o} {9 Je)e
((®) ° °) De)e
((e} {® ) De)e
((o °) ) Je)e

« (o > ) De)e

[((ede)e o ((o))e]
S

Mx2

G

O o

[((ed)e o ((e)e)e]

S

Mx2

L

Mx2  1identical to line 3 of 5*7
G

O

A student needs to memorize 36 digit multiplication rules (given @ and 1 are
trivial and commutative symmetry)

2x2 2x3 2x4 2x5 2xb 2x7

3x3 3x4 3x5 3x6 3x7
4x4 4x5 4x6 4x7

5x5 5x6 5x7

6x6 ©6x7

7x7

Multi-digit Multiplication

Depth-value handles numbers greater than 1

[(ee)occcee o (ee00)ooe| -——>

2x8
3x8
4x8
5x8
6x8
7x8
8x8

0.

2x9
3x9
4x9
5x9
6x9
7x9
8x9
9x9

Eg 43x26

((e0)ecccee (00)0cccee (00)000000 (00)000000) (00)000000 (00)000000 (00)000000

6



((e0000000) 0000000000 0000000000 0000) (000000) 0000000000 00000000
((ecee00ee) (o) (® e0ee) (e0eeee) (o) eooo0000
((occcccee o o) ocooe c0c0ee o) cooooo0e

C (® ) (® o) ceccccce

(C (® °) o) ecccceee -——> (((o) o) o) ecccccee

This, of course, is pretty horrible, and digits work more nicely. The overhead
again is memorizing digit multiplication rules.

Here in mixed notation, four replicates of (2)6 replace the four units
represented by the numeral 4. Three replicates replace the 3.

43x26: [(2D6 1 (4)3] == [(26 1 @@1111111]
( * * * * ) * * *
C (26 (2)6 (2)6 (2)6 ) ()6 (2)06 (2)0 subst
C 23{23{23{2) 6 o6 ©6 ©6) (2}{2}{2) 6 6 6 1linear
(@ 2 2 2)6 6 6 6) (2 2 2)6 6 6 mergexs
cc 8 )642246) (2 2 2)6426 split, unsplit
CcC 8 DM 22 ) @2 2 2) (1) 26 groupx3
¢ 8 Y 22 2 2 2 8 unsplit
cc 8 {1y {1 22} {2 2 2% {1) 8 linear
cC 8 1 122 2 2 2 1) 8 mergex4
CC @D) ks {1 1) 8 groupx2
cC @) 1 1) 8 merge
(1 1138

This method does not require multiplication rules, but of course you may have to
generate up to nine replicates at each depth. An alternative is to use
multiplication rules. The numeral being substituted into then becomes an
operator. Below the “times” concept represented by “x” is made explicit in a
mixed notation:

[(2)6 1 (4x*)3x*]

(4x C 2 ©06)3xx(C 2 6 mixed
( (4x2) 4x6 ) (3x2) 3x6 mixed
( ( 8 }{2)4 } {06} {18 mult
( (8 2)4 6 18 Mx3
( C O}? {D 1)8 Gx2
( C (O D 18 merge

The difference between making replicates and using digit multiplication rules
goes away quickly after the first few steps. Multiplication can be propagated
into depth notation in one step. Every digit in each level of the insert
multiplies every digit in each level of the insertee. Below, the insertee is
highlighted with larger font.



(438 x ((B) N2 == [B)N2 1 ((4)3)8]

(C CC *x4) *x4) *x4 ) (C *x3) *x3) *x3 ) (( *x8) *x8) *x8 subst
(C (C 6x4) 9x4) 2x4 ) (C 6x3) 9x3) 2x3 ) (( 6x8) 9x8) 2x8 subst
CC 43 3)6) 8 } {((18 (D7) 6 } {48} {72 (16 mult
(C (24 36) 8 (8 27 6 (D8 72 16 Mx4

The above step is partial cause typing in a line does not clearly expose all the
MERGING boundaries. More completely, there are eight MERGES that would occur in
one step. Two linear tidy steps expose the remaining four concurrent merges:

(@436 {18287 {487 6216 linear tidy
(@436 (1D82)87 (487 )621)6 Mx2
(C@43 {1D682r{4) 8787 )621)6 linear tidy
(C (2 43 1682 4 8787 )621)6 Mx2

(C (2 43 16482 )553737)621)6 split **

(C (C(2) 43 13 {13 {1 r{1r {13 {1))621)6 Gx5

(C (2 43 1 1 D 1 1 1D)621)6 Mx5

(C (2} iD ) 3 ) 9 )6 G, unsplit
(C (2 D ) 3 ) 9 )6 M

(C (C 3 ) ) 30 9 )6 unsplit

CCC@G3) 3)) 9 6 or 30309

Split and unsplit can occur concurrently, but the unsplit might have to change
later due to new merges. So I postponed the unsplit above until all groupings
were done. So NOT

(CC(2>431)6482)553737)621)6 split **
(@ 8 )6482)553737 9 D6 split, unsplit

This is a design decision that occurs frequently. Either display the minimal
number of steps by postponing UNSPLIT, or display the minimal form and
(occasionally) have to add additional undo steps.

Division
Division occurs by reverse Substitution.

Examples:

35 + 7: substitute * for 7 in 35

(CCCC & ) ) D)e)e [*  (Cede)e  (CCC(®I)))e)e]
(((Ce @ ) ))e)e uG
(CCCoCe ) ))e)e uM

((((e) o o ))e)e uG



(CC(®
(CC(®
(C
C
(C

Similarly 35 =+ 5:

e)(e

o) e o )o)e

D)e)e

e He)e
D)((e )e)e
)) *

substitute * for 5 in 35

«Cca o ) D))e)e
(C(Ce ° D))e)e
CC C o e D))e)e
(CC CedCe ® ))e)e
(CCCeNCe ) (e ))e)e
(CCCe))e o (o))e)e
C * e (e ))e)e
CC *) (o) (C e ))e)e
C *)) (C®)) e (8))e
C *D (®))e
CC ) * DC (e))e
C *o* )

uM

uG
subst
uMx2
subst

[*  ((e))e
uG
uMx2
uG

uM

uG
subst
uMx2
linear
subst
uM
subst

(CCCC®ID))e)e]

k%

** Note that UNMERGE could be applied four times here, resulting in an
opportunistic match that shortens the number of steps.

(C
C
C
(C
C

* e (e))e)e
*2)((@))CCC @ ))e)e
*)(CC @ ))e)((e))e
1D & B B

subst
uMx4
linear
substx2
M

% %k

The general principle is that opportunistic substitution may reduce the number
of steps, but the final MERGE that is required has degraded the regularity of

the recursive algorithm.

Digit Division

Division remains the same, except that pattern-identification requires knowledge

of digit multiplication rules.

deepest space first. Eg

( 7
4

(*

*H
L

w w w w

(*) 44444442

76 + 4 =19

6

| N ) B B NP A N

* ¥ ¥ % b

N NDNDNN

splitx2
subst **
unmerge

ungroup

Patterns should always be identified from the



The identification of the “4” in the shallowest depth is optional.

(*) * % %k ¥ % %k ¥ 2

(*) % % 3k % 3k % %k % 2

(*) %k % % %k %k %k %k *k

(*) %k %k % %k %k %k % *k

19

* 2

2

subst
linear

unsplit

subst

identification can be opportunistic and in parallel, and I *think* none of the
steps will ever need to be reversed.
parallelism, or perhaps better “followability”.

Long Division

The design goal may be maximal
The choice between parallel
transformations and sequential “pedagogical” transformations occurs often.

Here’s a more complicated long division, with a remainder.

C

C
C
(C
C

(C
C
C
(C

C
(C
C
C

C
C
(C

«x

C
(C
(C
C

(C
C
(C
(C

(C
(C
C
(C

C
(C
(C

((7)506

7

[e) BN o) <) B o))
[e2) BN o) o) I o))
[e) BN o) <) B e)]

()}
()}
()}

[e)]
[e)]
[e)]

N N

N NDNDN

R A A

S I R A

w

w

(CCCC4>57)153)9]

D

D
D
D
D

D
D
D
D

1

R R A

A N

3)

3)
3)
3)
3)

3)
3)
3)
3)

3)
3)
3)
3)

3)
3)
3)
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O O O O

O © O O O O O O

O O

iG  identify bounded digit to ungroup

uG# ungroup in terms of #

uM  unmerge to separate split digits ready to ungroup

S split digits to access parts ready to unmerge

sub substitute

L linear artifact
407139 + 756 = 538 r4l1 [*

4 ] D)
77777 5 D
v7777 3 2 ) 5
v7r7r77r{3t{ 2 ) 5
77777 AL 2 ] >
77777)@B) 5555 5
77777)55555 ( 3 )
7777755555} {( 3 OF o
77777555505 ((C 3 ML
77777)55555) (C 3 D))
77777)55555) (2 1 )
77777)55555) ((2} { 1 b))
77777)55555 W [ 1 D
77777)55555) ((2D 9 1)
77777)55555) (D 91 {1)
77777)55555) (D 9)[1]

iG
uG7

uMx2
iG

uG5

uMx?2
1G

uGo

uM
iG

uGl
uM
1G



uGo
sub
uM
1G

[e) e o))

A YAYA)
mMm M M

MMM

M

5555)6666

n o o &

77
2
2
2

C
C
L

(7777755555 (D
i
€6

(CW7777755555) (D
)
)
)
]

vz
((***** (
(5}

(€

uG7
uM
1G

[e)INe) o) I o)}

NN
MmN on N oM

MMM

L B B B

'Y Yealm
—
(S |

7

(776 9
(7777
(7777
(777

()
(€
(&)
()

uG5
uMx?2
1G

[e)BNe) e INe)]

NN NN
MmN N mM

I W W Wa

7

uG5

i N N N
© ©0©

-
LN ~a M\
<+ %%

[ToluTp!
AN ANARATNA)
© O © W ©
LA S S e
N N Ll A P
N N [ A NARA)

<+ < <

MMM

(C

(5> 3 {«
(5> 3 L

((5) * %k %k

uG?

4

(GBG3 «rrrvr77774

)9

1)

(BG)3 «crrrvrvvvvvrv

'Y
—
L
~ M

G3 ««rrrrvrvvv777
(B3 «rervrvv777

uG5
uMx?2
1G

[e2 I e) e RNe)]
MMM

55
55
55
55

MmN m
N
L
M
<+ < &
AN
M
N NN
N~ NN
N NN
[ N N
N~ NN
N~ NN N
N~ NN
N~ NN
AR RY)
N AN RN AN
AN
MmN mmn
AN
LN LN LN LN
AR R
N AN RN AN

uG5

)9

55
4

(B3 «crvrervrvvrv777)@ 555555

)9

(GBG3) («rvr777777)55555555

11



(€
(©)

(€
(&)
()
(€
(&)
()

(©)

538

Here’

3) (Cv7v777777)55555555} {4} { 5 )9  uMx2
3 (C77777777)55555555) (@)L 5 19 1iG
3) (C7v7777777)55555555)(4) 666666662 9 uGo
3 ((77777777)55555555)(4) 66666666281 S

3) ((77777777)55555555)66666666 ((4))281 L

3) kExkkkkk ((4)) 2 81 sub
3) 8 () D1 G

3) 8 (4 D1 M
3)8 r (4 D1 done

r 411
s an incomplete (rough!) recursive scheme for long division

GENERIC DIVISION

GET-T1

Go to deepest space to count number of front target digit T1
If there is one or more

then setD=number-of-times-Tl-is-available

else FRONT-IDENTIFY
GET-Tn

FRONT-IDENTIFY
Identify a digit to decompose via Ungroup
UnGroup and decompose wrt T1
setD=number-of-times-T1l-is-available

GET-Tn

Go to next shallower space
Get D copies of Tn
If shallowest space
then FINISH-UP
elseif D copies are available
then rearrange digits groups
else IDENTIFY
GET-Tn-next-recur

IDENTIFY
Identify a digit to decompose via Ungroup
UnGroup and decompose wrt Tn
Rearrange digit groupings to get D copies of Tn
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