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Our conceptualization of mathematical expressions, definitions, and proofs is 
formulated in the language of logic, using AND and NOT and IMPLIES and IF-AND-
ONLY-IF.  This same language maps to boundary algebra, so that the way we 
describe and address problems *logically* can also be formulated as the 
structural transformation of algebraic boundary forms.  

Boundary algebra provides a different way of thinking about deduction and 
rationality.  The language of boundary algebra consists only of SHARING and 
BOUNDING and EQUALS.  

In the sequel, we use boundary algebra tools to analyze and to deconstruct the 
structure of logic itself, with an emphasis on the relationship between logical 
connectives and algebraic EQUALS.

BOUNDARY ALGEBRA

Boundary algebra is based upon three simple initial equations.  This set of 
rules, called OPI herein, are sufficient to characterize any Boolean algebra.

   (A ( )) =     OCCLUSION
   A {A B} = A {B}    PERVASION
    ((A))  = A    INVOLUTION

These particular three equations constrain the interpretation of this use of 
boundary mathematics to Boolean algebra.  In particular, the inclusion of 
PERVASION as a rule anchors boundary algebra to logic.  A boundary algebra that 
includes PERVASION is called boundary logic.

An understanding of the formal basis of boundary logic would not necessarily 
effect the computational use of boundary mathematics tools.  It would, however, 
shed light on the relationship between boundary and Boolean algebras, and thus 
help to define the nature of logic and the nature of mathematics itself.

BOUNDARY LOGIC

The three boundary logic rules are a toolkit for structural manipulation of 
parens forms, especially for reducing them to minimality.  Since they map onto 
elementary logic, they are also a toolkit for mathematical deduction and proof. 
But are these rules independent?  Are all three necessary?  Is there an even 
more elegant way to formulate logic?

The following discussion is structural rather than semantic;  structural 
displays show definitions and transformations toward minimality.  Reference to 
logical meaning ceases at the formal description of the problem, prior to 
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transcription into parens forms, and is resurrected only when the answer is 
available at exit.

Thus, parts of the technical narration herein are in the language of boundary 
mathematics; the novice might consider this language as a series of machine 
instructions to achieve a goal.  There is also an undeniable need to describe 
boundary logic processes in terms of the original transcription language, that 
is, in terms of conventional logic, deduction and proof.  In almost all cases, 
transcription is immediately available before, during, and after boundary logic 
transformations.  Back-transcription becomes unavailable during boundary logic 
processes that have no mapping to conventional formal techniques.

The narration provides reasons for making specific transformations.  From the 
structural view, the goal is always to delete void-equivalent forms.  From the 
narrative view, the transformation sequences usually service goals that are 
external to the structural steps, such as the choice to define a lemma so that a 
subsequent proof is easier to describe.

In particular, we will prune boundary logic even further, by showing that 
INVOLUTION is a consequence of the other two rules.  This permits the 
formulation of conventional deductive proof techniques as a single recursive 
equation, with OCCLUSION as the base case, and PERVASION as the inductive case.

CONSIDER EQUALITY

The use of algebraic equations and the EQUALS sign in the rules of boundary 
logic carries with it a substantive set of built-in assumptions.  Algebra in 
general provides the familiar transformation techniques of replacement and 
substitution.  Equations define constraints on variables in expressions.    
Algebraic representation places requirements on the use of variables;  for 
instance, naming must be unique and names can stand in place of arbitrary 
expressions.    

The EQUALS sign identifies equivalence classes of expressions.  It has the 
properties of identity, transitivity, and commutativity which support the 
validity of the algebraic transformation techniques.  Importantly, EQUALS is a 
Boolean connective, the value of an assertion of equality is either True or 
False.

Herein, we use IFF to identify both Boolean EQUIVALENCE and symmetric logical 
consequence, and the EQUALS sign to identify algebraic boundary structures with 
the same value.  The letters X and Y are used solely for the definition of 
equality throughout the rest of the paper.

Some variations of the EQUALS sign are also used:
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  =?=  might be equal, to be proved
  =!=  not equal
  ==>  can be reduced to, by applying rules
  -->  equal by transcription between two languages
  =def= equal by definition

The primary goal is to make the connection between logical IFF and algebraic 
EQUALS explicit.  In particular, what logical theorems and mechanisms are 
inherently incorporated in an equation?  The sequel demonstrates that the EQUALS 
sign used within the rules of boundary logic already incorporates some of the 
rules that it also defines.  The particular initials of boundary logic (and by 
mapping, the rules of inference and deduction) are not axiomatic structural 
equations, they are in part consequences of any algebra that uses EQUALS.  

IF AND ONLY IF

The language of logic is conventionally cast with an implicational vocabulary; 
for an interpretation as logic, equality is IF-AND-ONLY-IF (IFF).  IFF is freely 
used as a conventional proof technique by constructing two required cases, the 
necessary (IF) condition and the sufficient (AND ONLY IF) condition.

The structure of IFF is dictated by the other Boolean connectives, but unlike 
the other collectives, there are two minimal structural varieties of IFF.  Any 
use of the EQUALS sign incorporates a representational choice between the 
structural varieties of IFF.

   (X IMPLIES Y) AND (Y IMPLIES X)  IFF-one

   (NOT (X OR Y)) OR (X AND Y)   IFF-two

That IFF has two minimal forms is not a priori apparent in the conventional 
language of logic, because the metric of operator complexity is confounded in 
that language.   Not only does each operator have a specific inverse (negation 
of the operator), it also has duals such as AND and OR that must be assigned 
equivalent metrics.

In logic, IMPLIES is historically the most fundamental connective.  IFF-one has 
two units of implicational complexity, plus whatever AND costs.  IFF-two, which 
is restricted to the connectives of Boolean algebra, has one unit negation and 
three of whatever AND/OR are worth.  The simplest form is not obvious.
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Boundaries condense implication and negation into one single unit BOUNDING, thus 
merging the languages of Boolean algebra and conventional logic structurally.  
SHARED SPACE absorbs the duality between AND and OR, leaving forms with clearly 
countable and comparable complexity metrics.

TWO FORMS OF IFF

The essence of Boolean complexity is that IFF (and its dual XOR) is the only 
two-valued Boolean function with two different structural forms in the 
minimalist boundary notation.  If it did not have two forms, then all Boolean 
structures would have straight-line simplification, and the NP=?=P problem would 
not exist.  

Expressed in boundaries, the two forms of IFF are:

   [ [[X] Y] [X [Y]] ]    IFF-one

      [X Y] [[X][Y]]     IFF-two

The two forms are necessarily EQUAL:

  [ [[X] Y] [[Y] X] ]  =  [X Y] [[X][Y]]    FLEX

Square brackets are highlighted parens.  Reading for logic, the left-hand-side 
of the FLEX rule is the conventional form of IFF:

    [[[X] Y] [[Y] X]]  -->  (X IMPLIES Y) AND (Y IMPLIES X)

The term IF-AND-ONLY-IF derives directly from this representation.  The right-
hand-side of FLEX has several readings that are not conventional formulations of  
IFF:

  [X Y] [[X][Y]]  -->  (NOT (X OR Y)) OR (X AND Y)

                  -->  (X OR Y) IMPLIES (X AND Y)

                  -->  ((NOT X) OR (NOT Y)) IMPLIES (NOT (X OR Y))

The two boundary forms of IFF are of equal complexity.  Both have four literals, 
two in each polarity. IFF-one uses three additional boundaries, while IFF-two 
uses only two.  This asymmetry is swapped in XOR, the negation of IFF, so that 
the overall boundary count is balanced at 5 per pair of complementary forms.  
More specifically, the fifth boundary in each pair is an external wrapper that 
negates the complementary form.
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As it turns out, the separation of forms sharing the outermost space in IFF-two 
outweighs any advantage of having a single top-level form.  This advantage is 
important when determining whether or not two forms, X and Y, are equal, because 
forms SHARING space are independent.  In contrast, an expression in conventional 
notation must have one and only one top-level connective.

The FLEX rule that equates the two forms of IFF is a special case of boundary 
DISTRIBUTION:

  [ [[X] Y] [[Y] X] ]  =  [X Y] [[X][Y]]    FLEX

      ((A B) (A C))    =    A   ((B)(C))  DISTRIBUTION

  with   A = [X Y],   B = X,  and  C = Y.

The demonstration applies PERVASION to construct the FLEX equation.  

  [[[X Y] X][[X Y] Y]]  =  [X Y]  [[X][Y]]    substitute
  [[[  Y] X][[X  ] Y]]  =  [X Y]  [[X][Y]]    pervasion

DEFINITION OF EQUALITY

EQUALS can be converted from a Boolean assertion into an assertion about logical 
consequence, IFF.  EQUALS is defined structurally as:

 X = Y    =def=    [[[X] Y] [[Y] X]] ==>( )<== [X Y] [[X][Y]]

The two structural varieties of IFF are both displayed in the above definition 
of EQUALS. An arrow, ==>, means that each structural form reduces to Mark by 
explicit rules (the initials of boundary logic).  Each arrow identifies a 
reduction target, ( ), that defines the validity of the equality; and each arrow 
implicitly incorporates a set of transformational rules that are accepted as 
valid transformations.  The compound bidirectional joining token 

   ==>( )<==

is a structural definition of consistency between the two forms of IFF.  In the 
demonstrations below, both forms of IFF are displayed concurrently.

This transformational process lifts the structural constraints of an equation, 
and converts them into a void-equivalence pattern-matching form.  Pattern-
matching requires the substitution-of-equals-by-equals mechanism of algebra, but 
nothing else.  Validity is no longer defined by the EQUALS binary connective, it 
is determined by an identity after "sub-algebraic" pattern-matching.  
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The definition of EQUALS does not limit the variable X and Y to two-valued 
Boolean forms.  Thus, the conclusions of this paper apply to algebraic forms in 
general, and are not limited to the interpretation of equality for logic.

REPLICATION 

The single rule that differentiates a Boolean algebra from other numerical 
algebras is REPLICATION, conventionally called IDEMPOTENCY.  REPLICATION 
basically collapses cardinality, so that, in a sense, two is the same as one.

REPLICATION is a special case of PERVASION for which both B and the curly braces 
are void-equivalent:

    A    A      =   A   REPLICATION

    A  { A B }  =   A  {B}  PERVASION

PROOF OF IDENTITY

To illustrate the technique of expanding an equation to the boundary form of 
IFF, consider the case of IDENTITY

   A  =  A    IDENTITY

The proof below converts an algebraic equation into its equivalent structural 
form by substitution into the definition of IFF.  Only the rules of PERVASION 
and OCCLUSION are then applied to algebraically reduce the IFF forms to Mark, 
the boundary form of logical TRUE. 

Prove:  A = A    with    X = A  and  Y = A

 [[[X] Y] [[Y] X]] ==>( )<== [X Y] [[X][Y]]   def
 [[[A] A] [[A] A]] ==>( )<== [A A] [[A][A]]   subst
 [[[ ] A] [[ ] A]] ==>( )<== [A  ] [[A]   ]   -per
 [               ]  = ( )<== [A  ] [[A]   ]   -occ
 [               ]  = ( )<== [A  ] [      ]   -per
 [               ]  = ( ) =        [      ]   -dom

The left and right columns are two entirely different and independent proofs, 
displayed concurrently.  They have some reduction steps in common, with the 
left-hand-side faster to converge on the result. The equivalence of the two 
forms of IFF is not assumed or used.  Each transformation is identified on the 
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far right, with constructive use preceded by "+" and void-equivalent use, by 
"-".

The last step of the proof uses DOMINION, a trivial theorem of OCCLUSION:

   A ( ) = ( )    DOMINION

                         A ( )  =?=  ( )
    (A ( )) =?= (( ))    +bound
    (A ( ))  =         -occ

PROOF OF INVOLUTION

The boundary forms of IFF nest each variable, X and Y, at least one level deep.  
This nesting is the key that resolves several foundational questions in logic, 
such as the Robbins problem and the role of double negation.  Specifically, in 
the language of boundaries, INVOLUTION is a consequence of the use of EQUALS 
rather than an initial equation that must be assumed.  The definition of EQUALS 
applies whenever a rule is expressed as an equation.  Therefore, since boundary 
logic is an algebraic system, a sufficient set of initials for OPI is

   (( ) A) =     OCCLUSION
   A {A B} = A {B}    PERVASION

INVOLUTION becomes a theorem built implicitly into the use of the EQUALS sign in 
the algebraic equations.  

The two above initials, together with the definition of IFF, can be used to 
prove INVOLUTION. 

Prove:  ((A)) = A    with    X = ((A))  and  Y = A

      [[[  X  ] Y] [[Y]   X  ]] ==>( )<== [  X   Y] [[  X  ][Y]] def
      [[[((A))] A] [[A] ((A))]] =?=( )=?= [((A)) A] [[((A))][A]]      subst
      [[[(( ))] A] [[A] (   )]] =?=( )=?= [(( )) A] [[(   )][A]]      -per
      [[[     ] A] [[A] (   )]] =?=( )=?= [      A] [       [A]]      -occ
      [                       ] =?=( )=?= [      A] [       [A]]      -occ
      [                       ] =?=( )=?= [      A] [          ]      -per
      [                       ]  = ( ) =            [          ]      -dom
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FUNCTIONAL SUBSTITUTION

One of the mechanisms embedded in algebraic equality is functional substitution:

  X = Y   implies   F[X] = F[Y]  FUNCTIONAL SUBSTITUTION

In particular for boundary algebra,

  X = Y   implies    (X) = (Y)

FUNCTIONAL SUBSTITUTION is the first step in the above proof of DOMINION.

The boundary form of logical implication is 

  X implies Y    =def=     (X) Y

FUNCTIONAL SUBSTITUTION of boundaries can be proved rather than assumed, using 
only the definition of IFF and the two boundary logic rules.  

In demonstrating that one equation implies the other, the usual algebraic 
technique would be to convert one equation into the form of the other, or 
perhaps to convert both equations into a common third form.  The proof below 
uses the boundary logic technique of converting each equation into a single 
boundary form using the definition of IFF, and then placing both into the 
boundary form of implication.  This results in one boundary logic form that can 
then be reduced using only OCCLUSION and PERVASION.  The proof technique uses 
PERVASION to insert an existing form into another form and then to subsequently 
reduce the result. 

FUNCTIONAL SUBSTITUTION expressed purely in boundaries, and without EQUALS, is: 

    X  =  Y   -->  [ [[ X ] Y ] [[ Y ] X ] ]

   (X) = (Y)  -->  [ [[(X)](Y)] [[(Y)](X)] ]

    X = Y implies (X) = (Y)  -->  ( [[[X] Y] [[Y] X]] ) [[[(X)](Y)] [[(Y)](X)]]
Below, FUNCTIONAL SUBSTITUTION is proved twice, once using IFF-one as 
illustrated above, and once using IFF-two.  Forms that are inserted into another 
form using PERVASION constructively are highlighted by carets, ^...^.
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Prove:   X = Y    implies    (X) = (Y)

IFF-one:  [[[X] Y] [[Y] X]]

 ( [[[X] Y] [[Y                         ] X]] ) [[[(X)](Y)] [[(Y)](X)]]  subst
 ( [[[X] Y] [[Y ^[[[(X)](Y)][[(Y)](X)]]^] X]] ) [[[(X)](Y)] [[(Y)](X)]]  +per
 ( [[[X] Y] [[Y ^[[[( )]( )][[( )]( )]]^] X]] ) [[[(X)](Y)] [[(Y)](X)]]  -per
 ( [[[X] Y] [[Y ^[                    ]^] X]] ) [[[(X)](Y)] [[(Y)](X)]]  -occ
 ( [[[X] Y] [                             X]] ) [[[(X)](Y)] [[(Y)](X)]]  -occ
 ( [[    Y] [                             X]] ) [[[(X)](Y)] [[(Y)](X)]]  -per

 ( [[    Y] [X] ^[[[(X)](Y)][[(Y)](X)]]^    ] ) [[[(X)](Y)] [[(Y)](X)]] +per
 ( [[    Y] [X] ^[[[   ]   ][[   ]   ]]^    ] ) [[[(X)](Y)] [[(Y)](X)]] -per
 ( [[    Y] [X] ^[                    ]^    ] ) [[[(X)](Y)] [[(Y)](X)]]  -occ
 (                                            ) [[[(X)](Y)] [[(Y)](X)]]  -occ
 (                                            )                          -dom

IFF-two:  [X Y] [[X][Y]]

 ( [X Y               ] [[X][Y]] ) [(X)(Y)] [[(X)][(Y)]]  subst
 ( [X Y               ]          ) [(X)(Y)] [[(X)][(Y)]]  -per
 ( [X Y ^[[(X)][(Y)]]^]          ) [(X)(Y)] [[(X)][(Y)]]  +per
 ( [X Y ^[[( )][( )]]^]          ) [(X)(Y)] [[(X)][(Y)]]  -per
 ( [X Y ^[          ]^]          ) [(X)(Y)] [[(X)][(Y)]]  -occ
 (                               ) [(X)(Y)] [[(X)][(Y)]]  -occ
 (                               )                                -dom

IFF-two has two independent forms at the top level.  This advantage leads to a 
shorter proof.

BOUNDARY SUBSTITUTION

INVOLUTION permits the implication of FUNCTIONAL SUBSTITUTION to go both ways, 
that is, to be IFF:

  X = Y    iff     (X) = (Y)   BOUND SUBSTITUTION

This proof uses the standard algebraic technique of converting one equation into 
the other.

   (X)  =  (Y)     given
       ((X)) = ((Y))     funct subst
         X   =   Y      inv
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The proof shows that the rule of BOUND SUBSTITUTION is equivalent in power to 
the rule of INVOLUTION.  Given either one, the other is a consequence.  Here is 
a direct algebraic proof of INVOLUTION that uses BOUND SUBSTITUTION:

   (A          )     lhs
   (A          ) ((   ))    +occ
   (A          ) (((A)))    +per
   (A ^(((A)))^) (((A)))    +per
   (A ^((( )))^) (((A)))    -per
   (A ^(     )^) (((A)))    -occ
                 (((A)))    -occ, rhs

    (A) = (((A)))    construction
     A  =  ((A))    bound subst

FUNCTIONAL SUBSTITUTION, proved above, is one direction of the IFF of BOUND 
SUBSTITUTION.  The proof of bidirectionality is completed below by showing that

   (X) = (Y)   implies   X = Y

Again, the proof requires only the definition of IFF and the two rules of 
OCCLUSION and PERVASION.  Both varieties of IFF are shown concurrently and 
independently.

Prove:     (X) = (Y)  implies  X = Y

Variety 1:  [[[X] Y] [[Y] X]]

 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y] [[Y] X                            ]]  imp
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y] [[Y] X ^([[[(X)](Y)] [[(Y)](X)]])^]]  +per
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y] [[Y] X ^([[[( )]   ] [[   ]( )]])^]]  -per
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y] [[Y] X ^([[        ]           ])^]]  -occ
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y] [[Y] X ^(                       )^]]  -occ
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y]                                    ]  -occ

 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y       ^([[[(X)] (Y)] [[(Y)] (X)]])^]]  +per
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y       ^([[[   ] ( )] [[( )]    ]])^]]  -per
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y       ^([            [         ]])^]]  -occ
 ( [[[(X)](Y)] [[(Y)](X)]] ) [[[X] Y       ^(                         )^]]  -occ
 ( [[[(X)](Y)] [[(Y)](X)]] ) [                                           ]  -occ
                             [                                           ]  -dom
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Variety 2:  [X Y] [[X][Y]] 

 ( [(X)(Y)] [[(X)][(Y)]] ) [X Y] [[X][Y]]    imp
 (          [[(X)][(Y)]] ) [X Y] [[X][Y]]    -per
 (          [[(X)][(Y)]] ) [X Y] [[X][Y]] [[X][Y]]   +per

 ([[(X)][(Y)]]) [X Y] [[X ^([[(X)][(Y)]])^][Y]] [[X][Y                 ]] format
 ([[(X)][(Y)]]) [X Y] [[X ^([[(X)][(Y)]])^][Y]] [[X][Y ^([[(X)][(Y)]])^]] +per
 ([[(X)][(Y)]]) [X Y] [[X ^([[(X)][   ]])^][Y]] [[X][Y ^([[   ][(Y)]])^]] -per
 ([[(X)][(Y)]]) [X Y] [[X ^(            )^][Y]] [[X][Y ^(            )^]] -occ
 ([[(X)][(Y)]]) [X Y] [                    [Y]] [[X]                    ] -occ

 ([[(X)][(Y)]]) [X Y] [[Y]] [[X              ]]       format
 ([[(X)][(Y)]]) [X Y] [[Y]] [[X ^[X Y] [[Y]]^]]   +per
 ([[(X)][(Y)]]) [X Y] [[Y]] [[X ^[  Y] [[Y]]^]]   -per
 ([[(X)][(Y)]]) [X Y] [[Y]] [[X ^[  Y] [   ]^]]   -per
 ([[(X)][(Y)]]) [X Y] [[Y]] [                 ]   -occ
                            [                 ]   -dom

DISTRIBUTION REDUX

We can now verify that DISTRIBUTION can be demonstrated without INVOLUTION:

Prove:  A ((B)(C)) = ((A B)(A C))   with  X = A ((B)(C))  and  Y = ((A B)(A C))

Due to the length of the forms, the two structural varieties of IFF are 
presented on different lines:

IFF-one:

    [[[    X     ]      Y      ] [[     Y      ]     X     ]]] ==> ( )
    [[[A ((B)(C))] ((A B)(A C))] [[((A B)(A C))] A ((B)(C))]]] =?= ( )   subst
    [[[A ((B)(C))] ((A B)(A C))] [[((  B)(  C))] A ((B)(C))]]] =?= ( )   -per
    [[[A ((B)(C))] ((A B)(A C))] [[            ] A ((B)(C))]]] =?= ( )   -per
    [[[A ((B)(C))] ((A B)(A C))]                             ] =?= ( )   -occ

    [[[A ((B)(C)               )] ((A B      )(A C      ))]]   =?= ( )  format
    [[[A ((B)(C) ^((A B)(A C))^)] ((A B      )(A C      ))]]   =?= ( )  +per
    [[[A ((B)(C) ^((  B)(  C))^)] ((A B      )(A C      ))]]   =?= ( )  -per
    [[[A ((B)(C) ^(          )^)] ((A B      )(A C      ))]]   =?= ( )  -per
    [[[A                        ] ((A B      )(A C      ))]]   =?= ( )  -occ
    [[[A                        ] ((A B ^[A]^)(A C ^[A]^))]]   =?= ( )  +per
    [[[A                        ] ((A B ^[ ]^)(A C ^[ ]^))]]   =?= ( )  -per
    [[[A                        ] (                      )]]   =?= ( )  -occ
    [                                                      ]   =?= ( )  -occ
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IFF-two:

    ( ) <== [    X           Y      ] [[    X     ][     Y      ]]
    ( ) <== [A ((B)(C)) ((A B)(A C))] [[A ((B)(C))][((A B)(A C))]] subst
    ( ) <== [A ((B)(C)) ((  B)(  C))] [[A ((B)(C))][((A B)(A C))]] -per
    ( ) <== [A ((B)(C))             ] [[A ((B)(C))][((A B)(A C))]] -per
    ( ) <== [A ((B)(C))             ] [            [((A B)(A C))]] -per

    ( ) <== [A ((B)(C))] [[((A B               )(A C               ))]] format
    ( ) <== [A ((B)(C))] [[((A B ^[A ((B)(C))]^)(A C ^[A ((B)(C))]^))]]+per
    ( ) <== [A ((B)(C))] [[((A B ^[  (( )(C))]^)(A C ^[  ((B)( ))]^))]]-per
    ( ) <== [A ((B)(C))] [[((A B ^[          ]^)(A C ^[          ]^))]]-occ
    ( ) <== [A ((B)(C))] [[(                                        )]]-occ
    ( ) <== [A ((B)(C))] [                                            ]-occ
                         [                                            ]-dom

Thus, DISTRIBUTION and INVOLUTION are both theorems of the two algebraic 
initials of boundary logic:  OCCLUSION and PERVASION.
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EVERYTHING BUT INVOLUTION

Kauffman has constructed an algebra system that includes OCCLUSION and PERVASION 
but not INVOLUTION.  The idea is to add another element with a definition that 
excludes the validity of INVOLUTION.  Kauffman's system, called OPe here, is:

  A, B in {<void>, ( ), e}

  (A ( )) =     OCCLUSION
  A {A B} = A {B}    PERVASION
     (e)  = ( )    DEFINITION of e

OPe excludes INVOLUTION since substitution of e into the form of INVOLUTION 
results in a contradiction:

  ((A))  =?=  A    INVOLUTION

  ((e))  =?=  e     subst e
  (( ))  =?=  e     subst (e)
         =!=  e                  -occ

The definition of e also excludes BOUNDARY SUBSTITUTION. since its use results 
in a contradiction:

     (e)  =  ( )
      e  =!=               boundary substitution

A limited form of INVOLUTION is possible.  In all cases:

  (((A))) = (A)    BOUND-INVOLUTION

To demonstrate this, only the case of e needs exploration:

   (((e))) =?= (e)
   ((( ))) =?= ( )    subst 
   (     )  =  ( )    -occ

Thus the exclusion of INVOLUTION is quite limited, it fails only in the case of 
((e)).  
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DISTRIBUTION FAILS

DISTRIBUTION is a theorem of OPI, and underlies the FLEX rule that equates both 
varieties of IFF.  The proof of DISTRIBUTION requires INVOLUTION, since "A" 
cannot escape the top-level space without invoking a rule that places it solely 
in a deeper space.  INVOLUTION is the only rule that does so.

    A                  ((  B)(  C))
    A                  ((A B)(A C))    +per 
  ((A)               ) ((A B)(A C))    +inv
  ((A) ^((A B)(A C))^) ((A B)(A C))    +per
  ((A) ^(          )^) ((A B)(A C))             -per
                                 ((A B)(A C))        -occ

In the OPI system, INVOLUTION, as well as DISTRIBUTION, can be proved as 
theorems.  In OPe, DISTRIBUTION itself fails in the case of distributing e.  The 
specific violations of the DISTRIBUTION rule can be identified by case analysis.

DISTRIBUTION works in all cases that A ≠ e:

B = e   A  (( e )( C )) =?= (( A  e )( A  C ))  subst
    A  ((   )( C )) =?= (( A  e )( A  C ))  e
    A               =?= (( A  e )( A  C ))  -occ

  A =                   =?= ((    e )(    C ))  subst
               =?= ((      )(    C ))  e
                =                       -occ

  A = ( )  ( )              =?= ((( ) e )(( ) C ))  subst
   ( )               =  (                )  -occ

However, e cannot be distributed:

    e  (( B )( C )) =?= (( e  B )( e  C ))

B =     e  ((   )( C )) =?= (( e    )( e  C ))  subst
    e               =?= (( e    )( e  C ))  -occ
    e               =?= ((      )( e  C ))  e
    e               =!=                   -occ

B = e   e  (( e )( C )) =?= (( e  e )( e  C ))  subst
    e  ((   )( C )) =?= (( e    )( e  C ))  -per
    e  ((   )( C )) =?= ((      )( e  C ))  e
    e               =!=      -occ

B = ( )   e  ((( ))( C )) =?= (( e ( ))( e  C ))  subst
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    e  (     ( C )) =?= (         (e  C ))  -occ

  C =    e  (     (   )) =?= (        ( e    ))  subst
    e               =?= (        ( e    ))  -occ
    e               =!=                  e

  C = ( )   e  (     (( ))) =?= (        ( e ( )))  subst
    e  (          ) =?= (                )  -occ
            (          )  =  (                )  -dom

  C = e   e  (     ( e )) =?= (        ( e  e ))  subst
    e  (     (   )) =?= (        ( e    ))  -per
    e               =?= (        ( e    ))  -occ
    e               =!=             e

DISTRIBUTION of e is valid only when both B and C are Mark.  This makes sense, 
since when B and C are both Marked, they dominate each of the spaces being 
distributed into.  In all other cases, e fails to distribute.  Through case 
analysis, the failure of DISTRIBUTION can be seen to be independent of 
INVOLUTION, since INVOLUTION is never used. 

WEAKENED PERVASION

An examination of the steps of the case analysis shows that PERVASION is used in 
only one circumstance:

   e  e  ==>  e      -per 

PERVASION is mandatory to establish DISTRIBUTION, however DISTRIBUTION is not 
valid in OPe.  Thus PERVASION could be weakened;  REPLICATION is sufficient to 
characterize the system OPe.

   (A ( )) =    OCCLUSION
    A  A   =  A    REPLICATION
      (e)  = ( )   DEFINITION of e

VALIDITY OF THE DEFINITION OF E

The definition of e is itself an equation:

  (e) = ( )

Therefore we can examine the structure of this definition by substituting into 
the definition of IFF and then reducing using the other two rules of OPe:
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Prove:     (e) =?= ( )     with    X = (e)    and    Y = ( ) 

      [[[ X ]  Y ] [[ Y ]  X ]] ==>( )<== [ X   Y ] [[ X ][ Y ]]
 [[[(e)] ( )] [[( )] (e)]] =?=( )=?= [(e) ( )] [[(e)][( )]] subst
 [            [      (e)]] =?=( )=?=           [[(e)]     ] -occ

Both versions of IFF yield

   [[(e)]] =?= ( )    (e)-INVOLUTION

That is to say, for the definition of e to be valid, INVOLUTION must apply to 
(e), which it does as shown earlier in the section.

But there is a problem:  it is not possible to define e to be different than the 
ground value <void> in OPe.  That is, two of the elements in OPe are not 
themselves unique, thus violating the equational presumption of unique labeling 
of ground forms.

Here we want the equality tests to fail:

Prove: e =?=  <void>        with    X = e    and    Y = <void>

      [[[ X ]  Y ] [[ Y ]  X ]] ==>( )<== [ X   Y ] [[ X ][ Y ]]
 [[[ e ]    ] [[   ]  e ]] =?=( )=?= [ e     ] [[ e ][   ]] subst
 [[[ e ]    ]            ] =?=( )=?= [ e     ]             -occ
 [[[   ]    ]            ] =?=( )=?= [       ]             e
 [                       ]  = ( ) =  [       ]              -occ

Given the definition of e, it cannot be differentiated from <void>.  For the 
system OPe, we lose both DISTRIBUTION and INVOLUTION, and the source of this is 
failure of the uniqueness of ground elements.  That is, the OPe basis set is 
both:
  {<void>, ( ), e}  and  {<void>, ( )}

SUMMARY

We have used three ideas to show that the definition of e is not unique.  

  1)  REPLICATION and OCCLUSION as the only rules
  2)  the structural definition of IFF
  3)  the conventional transformation techniques of algebra.
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INVOLUTION is not the central issue for OPe.  It fails as a rule only as a by-
product of the non-uniqueness of the elements. A possible lesson is that 
elements must be defined to be unique de novo, rather than indirectly by 
equations such as

  (e) = ( )    DEFINITION of e

If e were unique, then the definitional equation above would not be valid.  When 
we apply an algebraic operation such as FUNCTIONAL SUBSTITUTION, the operation 
needs to be consistent.  This is possible only if the basis elements are unique.  
Alternatively, we can accept the definition at the cost of undermining the 
definition of the EQUALS sign.
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EQUALITY IN THE ARITHMETIC

Spencer-Brown's book, Laws of Form, introduces two initial equations, CALLING 
and CROSSING, that define an arithmetic of boundaries.  

   ( ) ( )  =  ( )   CALLING

   ( ( ) )  =    CROSSING

The initials consist only of boundaries (no variables, thus an arithmetic) and 
the EQUALS sign.  EQUALS is defined as a type of indistinguishability, "is 
confused with".

The theme is that EQUALS is not free, it constrains and defines the initial 
axioms of a system.  How does the algebraic format of this system interact with 
the content of the initial arithmetic equations?  Specifically, is one of the 
rules implicitly built into the EQUALS sign used by the other?

We use the definition of IFF to show that this is indeed the case.  CROSSING is 
a theorem of a strengthened variety of CALLING:  arithmetic PERVASION.

ARITHMETIC PERVASION

PERVASION, which plays such a central role in the algebra, has the following 
form in the arithmetic:

  ( ) {( )}  =  ( ) {   }  arithmetic PERVASION-1

Again, the curly braces stand in place of any number of inward facing boundaries 
with respect to the pervading, outside form.  

When the curly braces stand in place of no boundaries, PERVASION becomes 
CALLING; thus, PERVASION therefore extends CALLING into deeper spaces.

   ( )  ( )  =  ( )   CALLING

Using the same technique of appealing to the structural definition of EQUALITY, 
can we show that arithmetic PERVASION is sufficient as a single initial?

The reduction of nested boundaries appears to pose an immediate problem for 
PERVASION as it is minimally defined above.  In an arithmetic, rules cannot be 
generalized to arbitrary configurations, thus the following simple example does 
not reduce by either CALLING or PERVASION.  

   (( )) (( ))
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Again, it appears as though CROSSING is mandatory.

To be effective as a single initial, arithmetic PERVASION must be extended to 
include a second case:

  (( )) {(( ))}  =  (( )) {   }  arithmetic PERVASION-2

This extension is not the same as including the rule of CROSSING, since the 
remaining double boundary cannot be equated to <void>.  The following reduction, 
however, is enabled:

   (( )) ( (( )) )    form
   (( )) (       )    -per2
   (   ) (       )    -per1
   (   )           -per1

IDENTITY

Consider first the case of identity:

Prove:  ( ) = ( )     with    X = ( )  and  Y = ( )

      [[[ X ]  Y ] [[ Y ]  X ]] ==>( )<== [ X   Y ] [[ X ][ Y ]]
      [[[( )] ( )] [[( )] ( )]] =?=( )=?= [( ) ( )] [[( )][( )]] subst

By observation, it is apparent that both of the arithmetic initials are needed 
to reduce these forms.  Use of CALLING leaves (( )) forms that cannot be further 
reduced.  Use of CROSSING leaves ( ) ( ) forms that cannot be further reduced.

The two cases of PERVASION, however, are sufficient to demonstrate the identity 
of Mark:

      [[[( )] ( )] [[( )] ( )]] =?=( )=?= [( ) ( )] [[( )][( )]] copy
      [[[   ] ( )] [[   ] ( )]] =?=( )=?= [( )    ] [[( )][( )]] -per1
      [[[   ]    ] [[   ]    ]] =?=( )=?= [( )    ] [[( )][( )]] -per1
      [[[   ]    ]            ] =?=( )=?= [( )    ] [          ] -per2      
      [[[   ]    ]            ] =?=( )=?= [       ] [          ] -per1
      [[[   ]    ]            ] =?=( )=?= [       ]              -per1

What is interesting here is a central theme of this section:  arithmetic 
PERVASION is sufficient for only one of the varieties of IFF.

In boundary algebra, there is an even simpler identity:

Prove:  <void> = <void>     with    X = <void>  and  Y = <void>
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      [[[X] Y] [[Y] X]] ==>( )<== [X Y] [[X][Y]]
      [[[ ]  ] [[ ]  ]] =?=( )=?= [   ] [[ ][ ]]   subst
      [[[ ]  ] [[ ]  ]] =?=( )=?= [   ] [      ]   -per1
      [[[ ]  ] [[ ]  ]] =?=( )=?= [   ]           -per1
      [[[ ]  ]        ] =?=( )=?= [   ]           -per2

Again, PERVASION is sufficient for the right-hand variety of IFF, but not for 
the more conventional left-hand variety. 

COMPUTATION

CALLING extends the cardinality of syntactic Marks into a SHARING space, while 
CROSSING extends the ordinality of syntactic Marks into BOUNDED space.  The two 
extensions (inside/outside, cardinal/ordinal, SHARING/BOUNDING) are orthogonal 
by construction.  The "breadth" space constructed by CALLING is independent of 
the "depth" space constructed by CROSSING.  

PERVASION generalizes CALLING to incorporate BOUNDED depth as well as SHARING 
breadth; both can be transformed by the single rule.  PERVASION renders inward 
facing parens transparent, maintaining structure solely by the containment of 
inner spaces.  

Computational implementations are algebraic to improve efficiency, 
transformations within the arithmetic are quickly obscured and excessively 
expensive.  In the two sets of examples below, a computational implementation 
would trigger the appropriate algebraic rule, yielding the result in one step.

 CALL/CROSS               arithmetic-PERVASION      algebraic reduction

   ( ) (( ) ( ))         ( ) (( ) ( ))               ( ) (( ) ( )) 
   ( ) (( )    )     call      ( ) (       )     per1      ( )             dom
   ( )               cross     ( )               per1

 CALL/CROSS               arithmetic-PERVASION      algebraic reduction

  (( ) ((((( ))))))            (( ) ((((( ))))))          (( ) ((((( ))))))
  (( ) (((     ))))  cross     (( ) ((((   )))))  per1                      occ
  (( ) (         ))  cross     (( ) (((     ))))  per1                        
  (( )            )  call      (( ) ((       )))  per1                        
  (( )            )  cross     (( ) (         ))  per1
                               (( )            )  per1                   
                                                  cross
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Disregarding computational efficiency, the arithmetic of CALLING and CROSSING 
has a structural elegance.  The notation defines two different processes that 
are applied to two different types of structure.  The two orthogonal rules 
permit two independent reduction regimes.  Forms SHARING space are in parallel, 
nested parens require sequential steps.

PERVASION, however, unifies breadth and depth of form into a single "spatial" 
transformation.  Viewed in a parallel implementation, PERVASION can extract any 
and all inner Marks in the presence of any external Mark, regardless of nesting. 

The bottom line is that *notation* should never exclude a possible 
implementation of the transformation being described.  When a set of 
transformation rules is applied in a *single algorithmic step*, the multiplicity 
of the rules themselves is motivated by cognitive rather than computational 
objectives.  In a machine implementation, PERVASION is a single algorithm;  it 
is not necessary to decompose it into CALLING and a type of CROSSING. 

BUILDING CALLING

CALLING is a subcase of PERVASION, and can be shown to be consistent:

Prove:        ( ) ( ) = ( )   with   X = ( ) ( )   and   Y = ( )

  [[[   X  ]  Y ] [[ Y ]    X  ]] ==>( )<== [   X    Y ] [[   X  ][ Y ]]
  [[[( )( )] ( )] [[( )] ( )( )]] =?=( )=?= [( )( ) ( )] [[( )( )][( )]]   subst
  [[[      ] ( )] [[   ] ( )   ]] =?=( )=?= [( )       ] [[( )   ][( )]]   per1
  [[[      ]    ] [[   ]       ]] =?=( )=?= [( )       ] [[( )   ][( )]]   per1
  [[[      ]    ]               ] =?=( )=?= [          ] [             ]   per2
  [[[      ]    ]               ] =?=( ) =  [          ]                   per1

BUILDING CROSSING

Since PERVASION incorporates CALLING as a subcase, the primary question is 
whether or not CROSSING is essential to the initials.  From the arithmetic 
PERVASION and the definition of EQUALS, we can construct/prove CROSSING?  

Prove:    (( )) =  <void>        with  X = (( ))  and  Y = <void>

    [[[  X  ] Y] [[Y]   X  ]] ==>( )<== [  X   Y] [[  X  ][Y]]
    [[[(( ))]  ] [[ ] (( ))]] =?=( )=?= [(( ))  ] [[(( ))][ ]]      subst
    [[[(( ))]  ] [[ ] (   )]] =?=( )=?= [(( ))  ] [[(   )][ ]]        -per1
    [[[(( ))]  ] [[ ]      ]] =?=( )=?= [(( ))  ] [[     ][ ]]        -per1
    [[[(( ))]  ] [[ ]      ]] =?=( )=?= [(( ))  ] [[     ]   ]        -per1
    [[[     ]  ] [[ ]      ]] =?=( )=?= [       ] [[     ]   ]        -per2
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    [[[     ]  ]            ] =?=( )=?= [       ] [[     ]   ]        -per2
    [[[     ]  ]            ] =?=( )=?= [       ] [          ]        -per1
    [[[     ]  ]            ] =?=( ) =  [       ]                     -per1

Again we see the characteristic pattern that the proof completes with IFF-two 
but not with IFF-one.

It is very interesting that the FLEX transformation (a special case of 
DISTRIBUTION) can alter the course of the right-hand reduction to avoid the 
necessity of INVOLUTION.  If FLEX is assumed, this variance does not occur, 
since steps from the right-hand conclusion can be traced upward through the 
definition of FLEX and down to the right-hand conclusion, yielding a proof for a 
subcase of INVOLUTION:

  ((( )))  =  ( )   BOUNDED CROSSING

THE STRANGE RESULT

There is a subtle interaction between the arithmetic rules and the use of the 
equality symbol.  Specifically, the non-conventional form of IFF, IFF-two, that 
consists of two separate subforms reduces using only the two cases of arithmetic 
PERVASION, while the conventional form of IFF, IFF-one, that is the conjunction 
of two implications becomes too deeply nested to reduce.  

The question being pursued is whether or not a basis set of rules for boundary 
algebra needs INVOLUTION.  That is, can INVOLUTION be shown to be a theorem of 
the other rules?  The algebraic result is that INVOLUTION is built into the 
equality sign, and as such is assumed in the notion of *algebra*.

In the arithmetic, the same can be said for CROSSING, that it is built into the 
equality token introduced in the two cases of arithmetic PERVASION.  
The role of INVOLUTION at the basis of logic is confounded with the structure of 
the algebraic equality statement.  IFF is the source of Boolean complexity, in 
that it has two structural definitions.  Without *both* of these definitions, we 
cannot engage in algebraic transformation.  The equality of the two structural 
definitions embeds the rule of DISTRIBUTION within the algebraic process.  
DISTRIBUTION, in turn, requires INVOLUTION, PERVASION and OCCLUSION.  However, 
INVOLUTION can be shown to be a consequence of IFF and PERVASION.
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