
1

THE ADVANTAGES OF BOUNDARY LOGIC -- A COMMON SENSE APPROACH

William Bricken

December 2002, updated July 2004

Containers

Boundary logic uses nested containers to express logic and computation.

Think of any physical container such as a glass, a box, or a room. A common

sense example of nested containers is a piece of candy inside a wrapper

inside a box inside a shopping bag.

A container has an inside and an outside. In text, any delimiter is a

container. Eg:

outside ((inside))

\

 delimiter

Boundary logic shows that Boolean logic is simply configurations of nested

containers. The relationship of containment expresses everything about

logical forms.

(()) two containers, one inside the other

() () two containers in the same space

Common sense example: How many ways can a box and a glass be arranged?

They can be outside each other, or one can be inside the other. The two

ways they are arranged can be used as two different logic values.

Boundary logic is much simpler than Boolean logic, since one container is the

same as two Boolean values. Boolean logic uses two different tokens for

values, while boundary logic uses one container and two different spaces.

0, 11 two different Boolean values

()) one container

 / \ and

 inside outside two different spaces

Boundary logic is unary, Boolean logic is binary. Unary logic has only one

type of value and one type of structure (the container), and is therefore

half as complicated as binary logic.

Here is how boundary logic manages to be simpler than Boolean logic:

2

Either space distinguished by a container can be empty. Empty spaces require

no processing, because there is nothing there to process.

(A)) nothing on the outside

()) A nothing on the inside

Boolean logic symbols can never be "not there", so they can never be

simplified by not existing. Boundary logic uses "nothing" to simplify

computation.

Algebraic Transformation

Boundary logic is algebraic, the same as the elementary algebra of numbers.

That is, boundary transformations work by following specific substitution

rules. The pattern of containers on one side of a rule is identified, and

the other side of the rule is substituted for that pattern. Pattern-matching

and substitution are very simple to implement, and use well-understood low

effort algorithms.

((A)) = A the IInvolution rule

(B ((C D))) ==> (B C D) an application example

In boundary logic, letters are variables, just as in the algebra of numbers.

A letter stands in place of any configuration of containers and other

letters.

Common sense example: Two nickels equal one dime. If you have two

nickels in your pocket, you can exchange them for a dime without changing

your wealth, but you have less stuff in your pocket.

Logic Reduction

Reduction using deletion or erasure

Because spaces support "nothing", boundary transformations work by deleting

structures. Boolean transformations work by accumulating and rearranging

structures. Deletion has excellent computational properties: the problem

gets smaller for each rule application, thus processing gets faster while

problem size decreases.

3

(A ()) = "nothing" the OOcclusion rule

(B (C ())) ==> (B) an application example

Common sense example: You are in a room. You walk out the door and then

back in the door. You can delete, or not perform, the two passages

through the door because you end up in the same place.

No ordering, no grouping, no counting

Containers can exist anywhere within a given space. There is no implicit

ordering so you don't need to keep track of what is first and what is second.

The sequence of forms in a logic problem is represented by the depth of

nesting of containers, while all structures within a given space can be

processed in parallel.

Logical operators have a specific number of arguments, usually two.

Containers have any number of contents. Boundary logic does not require you

to keep track of how many arguments there are because it does not matter how

many structures are inside a container.

Similarly, logical operators assemble their arguments into groups. A

container also groups all the forms inside it. However, since the container

accommodates any number of forms, there is no grouping of those structures

other than that imposed by the container they are in.

Common sense example: There are many people in a movie theater. To the

movie, it doesn't matter how many people, or where they are sitting, or

what groups of other people they came in with (boundary). Boolean

techniques keep track of who is where and when they came in.

Reduction of paths rather than operators

Containers are transparent from the outside: when structures are outside a

container, they can be deleted from the inside. This applies regardless of

the depth of nesting of containers. Conventional logic reduces every

operator separately. Boundary logic can often ignore intervening containers

to optimize an entire path of logic in one step.

4

A (A B) = A (B) the PPervasion rule

C (D (C E))) ==> C (D (E)) an application example

Common sense example: You have an open box of candy in a shopping bag.

You can reach in to get a piece of candy without being obstructed by the

shopping bag (boundary). Boolean techniques treat the shopping bag and

the box as always closed.

Only one type of structure, the container

Logical forms are composed of operators and arguments. The separation of

operation and connection (logic and wiring) through arguments is an artifact

of conventional logic. In a boundary approach, logic and connectivity are

the same thing. This effectively eliminates the step-wise approach of

Boolean logic.

Common sense example: Your car is parked. You get in and drive it away.

From the outside, the car is either still or moving (Boolean). But when

sitting on the inside, the dashboard is always still (boundary).

Explicit parallelism

Structures sharing the interior of a container are independent and thus can

be processed in parallel. Boolean techniques are inherently sequential.

Common sense example: You are looking for the ace of spades in a deck of

cards. You turn over one card at a time until you find it (Boolean). Or

you turn over the entire deck all at once and spread it out on the table

to find the ace (boundary).

Formality throughout

Boundary logic is based on transformation rules; a boundary logic

transformation system that follows the rules is always correct, providing

built-in verification.

Common sense example: You are walking down a hallway. The walls make you

enter the rooms only through doors. You can't make the mistake of walking

through a wall (formal). Or you can walk into the wall and risk a broken

nose (not formal).

5

One-to-many mapping

One way to describe the power of boundary logic is to say that one boundary

form is equivalent to many different Boolean forms, and one boundary

transformation is equivalent to many Boolean transformations.

(A) boundary form for NOT A,

 and also for A IMPLIES FALSE

 and also for NOT A OR FALSE

Common sense example: You withdraw ten dollars from the bank (boundary).

The teller can give it to you in many different combinations of bills

(Boolean).

Nothing more

The three rules identified above (Involution, Occlusion, Pervasion) define

all basic boundary transformation rules, and thus comprise all possible legal

transformations. Each rule identifies a pattern on the left-hand-side and a

simpler substitution pattern on the right-hand-side that deletes something.

These three deletion rules are sufficient for logic reduction.

History

Boolean logic has been embedded in language since antiquity. When computers

were invented, it was natural to adopt the linear, sequential characteristics

of Boolean logic found in language. However, semiconductor circuitry works

in parallel, more like a group of people than a string of words.

Boundary logic was discovered over 100 years ago, by the founding fathers of

formal mathematics (Peirce, Frege). The world elected to follow binary

symbolic logic until now, essentially ignoring the efficiencies of boundary

logic. This choice has been so extreme that boundary logic is completely

unknown to the wider community of scholars.

Summary

Boundary logic translates Boolean logic into a form that is consistent with

computation (parallel) rather than talking (serial). The result is a logic

reduction tool set that is:

-- much simpler to use

-- much simpler to implement

-- provides unique new tools for logic reduction and optimization

-- suggests new computer architectures that may be far more efficient

-- has the potential to improve all computational techniques.

