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Abstract 

 
Elementary mathematics education teaches both 

hands-on manipulation and the familiar symbolic 
abstraction.  Concrete, human-centric addition is 
characterized by the Additive Principle:  a sum is 
represented directly by its parts.  Boundary arithmetic is 
a formal system that combines additive (rather than 
symbolic) transformations with an efficient representation 
of number.  We implemented a calculator that displays 
boundary arithmetic computation as a tool to facilitate 
comparative axiomatic study of math learning.  The 
calculator has a standard keypad and includes four modes 
for numeric base (unary, binary, decimal units, decimal 
digits) and three spatial visualization modes (1D, 2D, 
3D).  Formal system design decisions focus on the 
consistency, transparency, and expressibility of a 
notation for arithmetic as a physical activity.  Calculator 
interface design decisions focus on rigorous adherence to 
transformation axioms and on the visual and interactive 
animation of the operations of arithmetic. 
 
 
1. Introduction 
 

We are currently constructing a tool to support study 
of the ways children are taught to think with mathematics 
and about mathematics.  The intent is to explore patterns 
of errors associated with different axioms and axiom 
systems that define elementary arithmetic.  The Rules of 
Algebra, for example, are a collection of axioms specified 
by group theory (the familiar concepts of commutativity, 
associativity, zero, inverse, and arity) that pervade 
elementary and secondary mathematics education.  But 
prior to the introduction of symbolic forms, preschool 
mathematics emphasizes interactive manipulation, 
embodiment of concepts rather than abstraction of 
concepts.  The tension between these two approaches "...is 
a fundamental and unavoidable challenge for school 
mathematics" [1]. 

Research in mathematics education recognizes the 
necessity of multiple modes of representation and 
multiple theoretic perspectives, and places mathematics 
learning in a pluralistic human context [2].  In contrast, the 

formal agenda of mathematics, called Hilbert's Program,  
includes removal of gross intuition, of psychological 
necessity, of physical interaction, and of concrete 
manipulation from the operations of mathematics [3].  "... 
numbers have neither substance, nor meaning, nor 
qualities. They are nothing but marks..." [4]. 

The symbolic model of arithmetic trades the visual 
and physical intuition that arises from direct experience 
for memorization of the rules of manipulation of 
structured strings of abstract tokens, explicitly divorcing 
representation from meaning in order to protect rigor.  The 
goals of advanced mathematics do not necessarily align 
with the needs of novice learners nor with the objectives 
of mathematics education [5].  For example, "...despite the 
obvious importance of visual images in human cognitive 
activities, visual representation remains a second-class 
citizen in both the theory and practice of mathematics" 
[6].  Kaput [7] is directly critical of the emphasis of form 
over content, and attempts to steer mathematics education 
toward representational diversity.  The advent of 
computer graphics and web-based virtual manipulatives 
[8,9,10] has reinforced visual and manipulative 
techniques at all levels of math education, but arithmetic 
itself is still characterized by a single symbolic theory, the 
Properties of Arithmetic, to the exclusion of other 
conceptualizations of number. 
 
2. Comparative Axiomatics 
 

Comparative axiomatics recognizes that the same 
mathematical concepts can be defined by a diversity of 
structural and transformational axioms, or rules.  The 
choice of formal systems is based on pragmatic 
considerations.  For example, integer computation can 
proceed in base-1, tallying marks in one-to-one 
correspondence with objects; in base-2, useful for 
computation within computers; in base-10, consistent 
with the current cultural emphasis on decimal notation; 
and even in mixed bases of 60, 12, 7, 28, and 365, 
reflecting models of time that have accrued over 
millennia.  The underlying mathematical ideas of 
addition and multiplication of integers remain the same, 
but the specific algorithms, implementation strategies, 
and cognitive models vary considerably. 



The history of formal logic, as another example, traces 
humanity's struggle to define rational thought, progressing 
through syllogistic reasoning, scholasticism, Boolean 
algebra, truth tables, natural deduction, resolution, and 
boundary logic [11,12,13,14].  Although each of these 
systems describes the structure of elementary logic, each 
provides a distinctively different strategy about how to 
implement it, both computationally and cognitively.  The 
differences are more than notation, they are also 
instrumental in defining what rationality means. 

A pivotal issue that can be addressed by comparative 
axiomatics is the respective roles of manipulative and 
symbolic models of arithmetic. In particular, is the 
separation of representation (syntax) from meaning 
(semantics) a desirable goal for math education? 

In the following, we review the structure of natural 
numbers, with emphasis on the pragmatic necessities of 
notations that support computation and comprehension.  
We then describe a formal structure for additive systems, 
those original forms of arithmetic that conform to direct 
rather than symbolic manipulation [15].   We provide 
formal axioms, and a depth-value notation that exhibits 
the efficiency of place-value numerals while behaving 
additively rather than symbolically.  This formal system 
is called boundary arithmetic. 

We then describe the implementation of a boundary 
arithmetic calculator, a tool that displays arithmetic 
computation based on additive transformations.  The 
primary design goal for the calculator is to rigorously 
convey the rules of additive arithmetic, to visually model 
computation as direct manipulation.  A future goal is to 
show side-by-side comparison of transformations required 
by different axiom systems on the same problems, in 
order to identify through protocol analysis precisely 
which axiomatic structures are associated with errors of 
understanding by students.  From this, we may be able to 
select representations for concepts and strategies for 
operations that have the pragmatic value of being friendly 
to human understanding.  An immediate objective is to 
demonstrate that physical manipulation has an axiomatic 
foundation, that arithmetic can be formally defined by 
concrete action.  The ultimate objective is to explore 
whether or not the reintroduction of elements of human 
learning, human psychology, and human physiology into 
the structures and processes of mathematics is a good idea. 

 
3. The Structure of Natural Numbers 
 

The earliest arithmetic was unit-based, sometimes 
called tally or stroke arithmetic [16,17]. 
 

    12:    //////////// 
 
Strokes map one-to-one onto a collection of objects, such 
as sheep or bananas or buckets of water.  Stroke arithmetic 
is unary (base-1), obviating the need for different tokens, 
for management of token position, and for collection of 
groups.  Addition in unary arithmetic is particularly 

simple:  to add two stroke-numerals, put them together in 
a shared space:  
 

    5 + 7 = 12:   /////  /////// ⇒ //////////// 
 

Stroke-numerals however are difficult to read.  It is 
necessary to count the strokes that are added together in 
order to read the value of their sum.   

The Egyptians and Babylonians introduced names for 
collections of a specific cardinality.  Roman numerals are 
a familiar example of a grouping system.  For example, 
five strokes are structurally converted into the shape "V". 
 

    5:  ///// ⇒ V 
 

The problem of readability is addressed by introducing 
iconic tokens for larger groups, such as M for 1000.  Like 
stroke-numerals, Roman numerals add by being placed 
together in a shared space.  Ordering tokens by cardinality 
is convenient but not necessary: 
 

    521 + 235:   DXXI   CCXXXV ⇒ DCCXXXXXVI 
 

Specific "Roman number facts", such as XXXXX = L, 
contribute to the ease of reading at the cost of increasing 
cognitive load: 
 

    756:        D CC XXXXX V I ⇒ DCCLVI 
 

The Indo-Arabic decimal system incorporates a 
common rather than a mixed base.  Individual number-
tokens are needed only for the digits 0 through 9.  Place-
value notation relies upon increasing multiples of the 
base 10 to express larger integers as polynomials.  Places 
implicitly represent powers. 
 

    2756:   (2x103) + (7x102) + (5x101) + (6x100) 
 

Indo-Arabic numerals exchange a great gain in readability 
for moderate losses in both computability and 
comprehension.  Numerals no longer add by direct 
combination, instead adding requires both memorization 
of number facts (such as 4 + 5 = 9) and tracking the place-
value of each digit.  Digits are maintained in a strictly 
sequential position (imitating spoken language);  
calculation then includes techniques for interfacing 
adjacent positions, commonly called "carrying" and 
"borrowing".  It takes several years of schooling for young 
students to master this representation. 

Boundary numerals use depth-value notation to enhance 
readability.  The techniques were first published for base-2 
in 1995 by Louis H. Kauffman [18].  A boundary numeral 
replaces place-values by successively nested enclosures: 
 
    2756:    (((2) 7) 5) 6 
 

Each boundary is read as multiplying its contents by the 
base of the system.  Depth-value is a maximally factored 
form, in contrast to the polynomial representation of 
place-values: 
 

    2756:      10x( 10x( 10x( 2 ) + 7 ) + 5 ) + 6 



In this notation, shared space is implicitly additive, while 
crossing boundaries is implicitly multiplicative.  
Addition is achieved by placing two or more numerals 
into the same space and then merging boundaries at the 
same depths. 

Each type of number system represents a different 
perspective on what arithmetic means and how it works.  
Each affords particular errors in computation and each 
enforces particular limits on cognition. 
 
4. Principles of Unit Ensemble Arithmetic 
 

A unit is a mark, stroke, notch, pebble, shell, or other 
discrete singular distinction.  Replicate units are intended 
to be indistinguishable in order to reduce the idea of 
cardinality to its foundation of one-to-one correspondence 
between units and objects.  An integer is an ensemble of 
identical units.  There is no zero unit.  Unit ensembles 
support the Additive Principle:  the ensembles 
contributing to a sum together represent the sum.  Unit 
ensembles, and additive systems in general,  can be either 
concrete or abstract.  For example, a pocket full of pennies 
is concrete, while making a mark on a piece of paper for 
each penny is abstract.  Both pennies and marks act 
additively. 

Additive computation is achieved by relocation of 
ensembles, or it can be achieved simply by cognitive 
refocusing of perspective.  In either case, addition is the 
consequence of the removal of spatial partitions, whether 
they be explicit or implicit.  Residuals of additive notation 
are still present in today's arithmetic.  Mixed numbers, for 
example, place whole numbers and fractions in the same 
space, implicitly embedding addition into the shared 
space.  1 3/4  means 1 + 3/4. 

Unary additive systems have a substantively different 
axiomatic foundation than group-theoretic symbolic 
systems.  Addition in a group-theoretic system is 
represented by symbolic rules that map ordered pairs onto 
single objects, together with rules that permit ordering 
and grouping to be altered.  The zero place-holder that 
supports place-value notation is also the group-theoretic 
additive identity.  Proof is supported by induction over 
successive integers.  Within the additive concept of units 
sharing the same space, there are no notions of ordered 
pairs (relational structure), grouping (associativity), 
ordering (commutativity), arity (specific cardinality of 
operator arguments), or zero (identity for addition).  Proof 
is by induction over ensembles.  Unit ensembles also 
differ significantly from sets:  there is no empty 
ensemble, identical individual units cannot be 
differentiated by labeling or by indexing, there is no 
distinction between a single unit and an ensemble of one, 
and no unit participates in more than one ensemble.  As 
well as being grounded in experience, additive systems 
are also conceptually simpler. 

Teacher training texts recognize the importance of 
additive systems throughout lower elementary 

mathematics.  However, these texts explain the meaning 
of addition in terms of symbol manipulation, not in terms 
of the spatial intuitions of the Additive Principle.  For 
example, commutativity of unit addition is achieved by 
fiat:  "We may associate 3 + 5 with putting a set of 3 
members in a dish, and then putting a set of 5 members in 
a dish to form the union of the sets.  We associate 5 + 3 
with putting the 5 set in a dish and then putting in the 3 
set." [19]  The unit ensemble definition of addition, in 
contrast, does not impose spatial or temporal ordering on 
actions.  Children can add several unit ensembles by 
pushing them together all at the same time. 

Unit ensemble arithmetic has two distinct drawbacks:  
mathematically, its formal structure seems not well 
understood, and pragmatically, it is very inconvenient to 
read the cardinality of large ensembles. 
 
5. A Formal Model of Additive Arithmetic 
 

The formal structure of unit ensemble arithmetic 
incorporates mereological fusion [20] as addition, and 
substitution based on one-to-one correspondence as 
multiplication.  Table 1 shows a symbolic foundation for 
unit ensemble arithmetic. 

Mereology is a formal theory of parts and wholes that 
does not include set theory.  In general, an ensemble is a  
mereological whole with parts that do not overlap. 

 
 

Table 1.  A formal structure for unit ensemble arithmetic. 
 

Language  
 • is an ensemble (interpreted as 1) 
 ◊ is an ensemble (interpreted as –1) 
 if A and B are ensembles, so is  A B 
Notation  
   A|B|C  ensembles in separate spaces 
 {A|B|C} apply fusion 
 [A C E] apply substitution 
Operations  
 {A|B|C} = A B C   (interpreted as addition) 
 [A • E] (interpreted as multiplication) 
 [• C E] (interpreted as division) 
Axioms  
 • ◊ = Cancellation 
 [A C E] = [E C A]   Symmetric Substitution 
 [A|B C E] = [A C E]|[B C E]     Distribution 
Polarity  
 ∆• = ◊ Change-polarity 
 ∆◊ = • Change-polarity 
 [◊ • ◊] = • (interpreted as –1 x –1 = 1) 
 ∆A = [◊ • A] and [• ◊ A]    (interpreted as  –1 x A) 
Induction 
 A = B  iff  ∆A B =            1-to-1 correspondence 
 A = B  iff  A C = B C                uniqueness 
 A = •  xor A = ◊ xor A = B|C     decomposition 

 



Different ensembles in separate spaces model different 
integers.  Different spaces are represented by bars: 
 
    A|B|C|D|E           ensembles in different spaces 
 

Fusion is the deletion of partitions between ensembles.  It 
is a variary, flat operation that applies to an arbitrary 
number of ensembles concurrently and does not support 
nested application.  The fusion instruction is represented 
by placing partitioned ensembles in curly braces.  The 
result of fusion is represented by ensembles sharing the 
same space. In the notation, spaces between fused 
ensembles have no meaning, they are visual highlights. 
 

  {A|B|C|D|E} ⇒ A B C D E      FUSE ensembles (add) 
 
For example, 
 

    3 + 1 + 2 = 6:  {•••|•|••} = ••• • •• = •••••• 
 

Textual delimiters (parentheses, brackets, braces) provide 
a convenient typographical notation for boundary 
arithmetic operations, although typography does impose 
an unnatural sequencing on the representation of additive 
concepts that is not introduced at higher dimensions.  

Multiplication is modeled by one-to-one substitution 
of ensembles for units. All substitutions occur in parallel.  
The SUBSTITUTE instruction [A C E] reads: concurrently 
substitute the ensemble A for each occurrence of C within 
the ensemble E.  In multiplication, C is a single unit. 
 

    [A • E]    substitute A for each • in E  (multiply) 
 

Although substitution itself is a directional process, the 
type of substitution that models the commutativity of 
multiplication is insensitive to direction.     
 

    [A C E] = [E C A]   symmetric SUBSTITUTION 
 

For example, substitute •• for each • in •••: 
 

    2 x 3 = 6: [••  •  •••] ⇒ •• •• •• 
 

Substitute ••• for each • in ••: 
 

    3 x 2 = 6: [•••  •  ••] ⇒ ••• ••• 
 

Fusion distributes over substitution: 
 
    [A|B C E] = [A C E]|[B C E]   DISTRIBUTION 
 

To incorporate subtraction, a second type of unit is 
provided, with opposite polarity.  • is interpreted as 1 and 
◊ is interpreted as –1. When numerals of different polarity 
occupy the same space, the Cancellation Axiom models 
subtraction as void-substitution: 
 

   • ◊ =   CANCEL units (subtract) 
 

Additive systems have no explicit zero, permitting 
absence and deletion to be used computationally. For 
example: 
 
    3 + 1 + –2 = 2:    {•••|•|◊◊} = ••••◊◊ = •• 

The auxiliary operator CHANGE-POLARITY, ∆, is useful 
for algebraic proofs.  Equivalence, for example, can be 
defined in terms of complete cancellation.  Characteristic 
of most boundary systems, computation proceeds via 
deletion (void-substitution), rather than by rearrangement.  
CANCEL, for example, is implemented as [<void> •◊ E].  
Decomposition permits  induction over ensembles. 

Polar units integrate into the substitution mechanism 
to model multiplication of signed numbers: 
 
    –1 x –1 = 1:     [◊ • ◊] = • 
 

The form being substituted for plays the role of a 
reciprocal, integrating a model of division into the 
substitution process.  In division, A is a single unit. 
 

    [• C E]      substitute • for each C in E  (divide) 
 
Substitute • for each ••• in ••••••: 
 

    6 ÷ 3 = 2: [•  •••  ••••••] ⇒ • • 
 

In general, [A C E] is interpreted numerically as AE/C.  
Some consequences of this model of multiplication: 
 

    [• C •] = 1/C  [A • A] = A2     

    [A A E] = E  ∆∆A = A     

    [A C E] = [B C E]  iff  A = B 
 

    [A C [E F G]] = [A [C E F] G] = [[A C E] F G] 
 
6. Depth-value Notation 
 

Unit ensembles can be rewritten into an efficient 
depth-value notation by a standardization process that 
results in a boundary numeral with minimal structure, and 
corresponds to maximal factoring of the base for a 
conventional integer.  The rewrite process consists of two 
transformation rules, GROUP units (interpreted as multiply 
by the base) and MERGE boundaries (interpreted as 
distribution). 
 

            • • = (•)       GROUP BASE-2 
    ••••• ••••• = (•)       GROUP BASE-10 
 
         (•)(•) = (• •)     MERGE/SPLIT 
 

These rules apply in both directions, left-to-right to minimize 
structure after addition and multiplication, and right-to-
left to access structure during subtraction and division. 
 
7. Calculator Implementation 
 

The boundary arithmetic calculator is a prototype 
implementation, in Mathematica 7.0, intended to 
illustrate and explore additive arithmetic with children.  
The animation of boundary computation has both 
algorithmic and human-interface display components. 
The calculator shows computational steps as applications 
of specific transformation rules, unlike conventional 



calculators that show input and output but not process.  A 
human-centric computational process is necessarily 
observable and interactive, both for comprehension of 
procedures and for verification of results. 

The concepts of addition and multiplication 
inherently require little computational effort.  
Algorithmic effort arises directly from the use of non-
unary bases that facilitate convenient reading of large 
ensembles.  Boundary arithmetic calculation, like all 
calculation in arithmetic, is dominated by the 
standardization of notation that permits ease of reading, 
rather than by the conceptually transparent processes of 
addition and multiplication. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.  The boundary arithmetic calculator interface 
 
7.1. Interface 
 

The calculator interface incorporates the familiar input 
keypad with a large display screen (Figure 1).  Only some 
of its functionality is currently implemented.  The keypad 
permits positive and negative integers to be added, 
subtracted, multiplied, and divided.  Keypad interaction is 
standard, digits are entered in conventional base-10 
notation, separated by operation signs and grouped by 
parentheses.  A textual information display directly above 
the keypad shows the current state of input; animation 
readiness, status, and duration; the expected result in 
standard notation; and error messages from human 
keypad slips and from software implementation bugs.  
The keypad EQUAL sign triggers an interactive animation 
of the desired computation.  The BACK key permits 

correction of input mistakes and the CLEAR key clears 
the animation display. 

A feature not found on conventional keypads is the 
VALUE key, which turns cursor-sensitivity of the display 
on and off.  When on, the cursor will display in 
conventional notation the value of the form directly under 
it.  This translation is useful for display of non-
conventional base systems, and for translation of 
unfamiliar boundary numerals. 

The calculator incorporates four computational BASE 
modes and three display SPACE modes.  The 2D 
representation of the integer 14 is shown below for each  
BASE mode: 

 
 
 
 
 

Base-1 displays unit ensemble arithmetic, using solid 
discs as 1 and hollow discs as -1.  BASE types other than 
base-1 use depth-value notation.  Depth is represented by 
successive nesting of typographical delimiters in 1D 
mode, by nested rectangles in 2D mode, and by stacked 
rectangular blocks in 3D mode.  The interpretation of each 
notation remains invariant;  forms sharing space add, 
while nesting multiplies by the base.  Base-2 shows 
binary arithmetic.  The representation is vertical, with 
solid squares representing 1 and hollow diamonds 
representing -1.  Base-10 shows  unit ensembles that 
correspond to decimal digits.  Base-10-digit shows 
aspects of conventional decimal notation, with digits 
from 1 from 9 in place of unit ensembles.  Both base 10 
forms display horizontally. 

The three SPACE modes emphasize that boundary 
arithmetic is not confined to symbolic strings, but rather 
can be converted freely between linear, planar, and 
manipulative forms. Of course, the display of three 
dimensional forms is still representational rather than 
experiential.  The 3D mode thus only indicates that 
computation can occur concretely, for example, by using 
stacks of physical objects such as blocks.  Bricken [21] 
presents a diversity of spatial and experiential notations 
derived from geometrical and topological transformation 
of boundary forms, including textual, enclosure, graph, 
map, path and block notational systems.    Examples of 
1D, 2D, and 3D boundary notations for 213 + 54 (prior to 
fusion) are shown below in Base-10.  

 
 

((••)•)••• (•••••)•••• 
 
 
 
 
 
 



Figure 4.  Animation of 20–41–136+2+258  in base-10-digit boundary notation, showing Cancellation 

Figure 3.  Animation of 213+54  in base-10  boundary notation, showing the Addition Principle 

Figure 2.  Animation of 213+54  in base-2  boundary notation, showing the Addition Principle 

7.2. Animation 
 

The animation display incorporates several 
conventional interactivity controls,  including a slider for 
accessing the animation at any step, and buttons for 
start/stop, faster/slower, and forward/backwards (Figure 
1).  Animations of different BASE types follow the same 
algorithmic reduction steps, however the appearance of 
each differs.  In this section, we describe the display of 
computation only in the 2D mode (additional examples 
of 1D display are presented in Sections 5 and 7.3). 

In base-1, the display of addition first shows input 
integers as unit ensembles and then moves them together 
into a group.  The VALUE key is necessary to count the 
units in the result.  For the other three BASE types that 
use depth-value notation, addition is animated by first 
aligning nested depths visually, then moving adjacent 
boundaries together, and finally concurrently removing 
the partitions between boundaries.  Figure 2 shows the 
animation of  213 + 54 in base-2 and Figure 3 shows the 
same for base-10. (In Figures that follow, the calculator 
interface is not shown.) The animation can be interpreted 
as placing ensembles that start out at the same depth but 
in different spaces into a single space of that depth.  The 
shape of the resulting numeral is then normalized for ease 
of reading.   

Should a space contain units of opposite polarity, 
polar units are matched one-to-one, and then each pair 
disappears into the background void, a visualization of 
the Cancellation rule, • ◊ =   .  In base-10-digit, digits 
first split in order to generate pairs of digits with equal 
cardinality and opposite polarity.   Each pair merges and   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

disappears.  Figure 4 shows five concurrent cancellations in 
base-10-digit (the initial boundary merging is not shown).  
Digit splitting is horizontal, digit merging is vertical.   

This completes the computational phase for addition.  
Whatever remains represents the signed value at each 
particular depth.   Although the calculator displays a 
consistent base over all spaces, in principle each space is 
independent. Different spaces within the same numeral 
can maintain different bases, different polarities, even 
different transformation strategies. 

Standardization for readability comes next.  All spaces 
convert to the same base and the same polarity.    Local 
interaction across adjacent boundaries makes 
standardization a strongly parallel process [22].  When 
there are more units in a space than the cardinality of the 
base, units GROUP to form a new space.  Grouping is 
displayed as units moving to form a base group, similar  
to cancellation, however when they converge they become 
a singular unit that grows a boundary around itself.  
Although the position of specific digits and ensembles 
does not enter into the axioms, from a visual perspective, 
when units form into groups there is a display dependence 
on proximity.  Multiple boundaries within the same 
space, generated by grouping, next merge via the MERGE 
rule.  Figure 5 shows a GROUP and MERGE sequence in 
base-10-digit.  In base-10-digit mode only, multiple 
digits also fuse to form a single digit that represents their sum.  
Base-10-digit operations require knowledge of the facts 
of digit addition (e.g. 1 + 1 + 4 = 6).  Digit facts are visual 
rather than symbolic in the other three BASE modes.  
Should all spaces have the same polarity, what remains is 
the simplest depth-value representation of the sum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 



The remaining possibility is that different spaces have 
different polarities.  In this case, MERGE is applied in the 
reverse direction, to SPLIT boundaries.  The boundary of 
the deeper space splits in two, with one boundary 
containing all but one unit, and the other containing a 
single unit. The boundary around the single unit collapses 
to reveal an ensemble of the appropriate base.  The new 
units separate to match units of opposite polarity one-to-
one, and are cancelled.  What remains is a representation of 
the sum with consistent polarity.  Figure 6 shows a SPLIT  
and  CANCEL sequence in base-10-digit.   

When zero is added into spaces that do not contain 
units, and all boundaries are removed, what remains in 
base-10-digit is a conventional place-value integer: 

 
 
 
 
 
During multiplication, the numeral being substituted 

is replicated once for each unit in the numeral being 
substituted into.  Visually, units being substituted for 
initially convert into miniature replicas of the numeral 
being substituted. The replicas then grow in place to 
match the scale of the host numeral.  This completes the 
computational phase for multiplication.  Next, units 
GROUP and boundaries MERGE, identical to the 
standardization phase after addition.  Substitution itself 
maintains the appropriate polarity of units, so that no 
canceling occurs as the result of substitution. 
 
7.3. Design Issues 
 

An important design constraint is for the animation 
display to maintain rigorous consistency with the axioms 
of boundary arithmetic.  Although the animation display 
is representational, it is intended also to serve as a set of 
dynamic instructions for conducting the same 
computation using physical manipulatives.  For this, the 
3D mode is most appropriate.  In 2D, rectilinear containers 
were selected to represent boundaries for ease of graphics 
display.  Earlier prototypes used circles, which 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

interfered with the display of parallelism.  For visual 
access, stacking rather than containment is used to 
represent depth  in 3D.  The intent of boundary notation is to 
maintain both the feel of manipulation and  transparency to 
dimension of representation.  Different display styles 
(varying shapes of units and orientation of numerals)  are 
a result of experimentation rather than empirical 
validation of effectiveness. 

Reviewing preschool math education concepts and 
playing with physical and virtual manipulatives helped 
the design process, however the central challenge was to 
unlearn how arithmetic is characterized.  Review of the 
history of mathematics helped to validate that adding by 
"shoving together" is quite natural; the abacus is an 
example that has been in use for four thousand years.  
History also shows that dominant mathematical opinions 
during a given period usually suppress competing 
opinions, both antiquated and innovative.  Prior to 
fractals being accepted as both beautiful and useful, for 
example, they were labeled "monster curves" and declared 
illegitimate [23,24].  The current debate over the 
legitimacy of diagrammatic proof echoes this struggle, for 
most mathematicians a proof must be symbolic [25,26].  
Strangely, we were unable to find an existing 
formalization of additive systems. 

There are three different choices available for 
subtraction:  as an operation, as addition of opposite 
polarities, and as multiplication by –1. 
 

 A – B  =  A + (–B)  =  A + (–1)B 
 
It seems a natural choice to use a negative unit, since that 
permits subtraction to be integrated with addition.  The 
idea of several types of units was preferred over defining 
subtraction as a different type of operation. This approach 
is consistent with the group theoretic idea of an inverse, as 
well as being consistent with the tight integration of 
multiplication and division as substitution.  However, 
such choices impose a specific model on the addition 
process.  Negative units, for example, permit different 
polarities in different spaces, a consequence of  parallelism 
but a significant deviation from conventional non-
commutative subtraction.  This is an example of the most 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Animation of 777+164+689  in base-10-digit notation, showing the GROUP  and MERGE  sequence 

Figure 6.  Animation of 5108–106–302  in base-10-digit notation, showing the SPLIT  and CANCEL  sequence 



challenging aspect of comparative axiomatics:  how much 
consideration should be given to established convention?  
Is innovation within a universally accepted convention 
(linear, base-10, place-value numerals) excluded a priori? 

Multiplication of signed numbers proved to be a 
difficult design decision.  The form [◊ • ◊] could be 
interpreted as:  "there are no •s in ◊, so substituting for • 
in ◊ involves no change;  the result should be ◊".  
CHANGE-POLARITY, ∆, provides a proof of the correct 
interpretation.  The central idea is: 
 

   ∆[A C E] = [∆A C E] = [A ∆C E] = [A C ∆E] 
 
[◊ • ◊] = ∆∆[◊ • ◊] = ∆[◊ • ∆◊] = ∆[◊ • •] = ∆◊ = • 

 

Base systems introduce unavoidable sequential steps 
into standardization.  Chains of  grouping (carrying) can 
occur, as in 99 + 1.  In 1D base-10-digit mixed notation, 

 
    {(9) 9|•} = (9) 9 • = (9)(•) = (9 •) = ((•)) 

 
Chains of boundary splitting (borrowing) can occur 
across empty boundaries, such as in 200 – 1: 
 

{((• •))|◊} = ((• •)) ◊ = ((•)(•)) ◊ = ((•) 9 •) ◊ =  
 

    ((•) 9)(•) ◊ = ((•) 9) 9 • ◊ = ((•) 9) 9 
 

From the perspective of visual animation, showing all 
potentially parallel processes overloads our ability to 
focus upon them all.  A design decision was to limit 
display of concurrent processes to those of the same type 
across all spaces (with a few exceptions which were easily 
followed). After each parallel set of transformations, the 
shape of the single boundary integer is normalized, so that 
the eye can come to rest prior to the next set of 
transformations.  Since the display area of the image 
varies widely, magnification is added selectively.  The 
current implementation has stubs to accommodate color, 
sounds, and other multimedia effects, however these are 
yet to be explored. 
 
8. Conclusion 
 

The computational effort associated with arithmetic is 
purely notational, arising from a compromise between 
ease of concept and ease of reading.  Unit ensemble 
arithmetic formalizes the conceptual ease of the Additive 
Principle.  Boundary arithmetic combines ease of reading 
with ease of computation.  This formal system provides 
the first step in a program of comparative axiomatics: 
having an alternative to compare.  We have implemented a 
boundary arithmetic calculator as a tool to explore 
understanding and errors made by children as they learn 
arithmetic.  Next we hope to contrast direct and symbolic 
manipulation, in an attempt to identify the appropriate 
roles of concrete and abstract mathematics instruction for 
children, and for adults burdened by math anxiety. 
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