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ABSTRACT

Instead of traditional mathematical notation, we can describe formal

mathematical systems in visual form.  While traditional notation uses a

linear sequence of symbols, visual mathematics uses boundary notation, which

is comprised of objects and boundaries to enclose objects.  Boundary notation

is abstract, decoupling the underlying mathematics of a system from its

visual representation.  Once a system is defined in boundary notation, visual

designs can be explored that optimize specific features.  We demonstrate this

approach with propositional logic and elementary algebra.  Visual mathematics

provides a robust foundation for visual languages much as linear mathematics

provides a foundation for programming languages.

1.  Introduction

Visual mathematics redefines mathematics spatially, so concepts such as

numbers, variables, and expressions can be manipulated and understood

visually.  Expressions in visual mathematics are groups of objects with

visible structure, where mathematically related components appear similar.

Users manipulate these expressions not by the standard rules, but by creating

and removing objects, by grouping and replacing parts of the expression, and

by changing positions of objects and boundaries.  Visual mathematics allows

perceptual interaction rather than symbolic processing.

We present a notation for describing formal mathematical systems, called

boundary notation.  Boundary notation is comprised solely of labeled objects,

spaces, and boundaries.  Because boundary notation represents mathematics

using only these spatial constructs, it allows interpretations of the

underlying concepts that are completely visual [1].  This representation is

visually interactive; an image completely describes an expression and

computation occurs visually.

In the remainder of this paper, we will introduce boundary notation, its

constructs, properties, and use.  We then describe propositional logic and

elementary algebra using boundary notation and provide visualizations of

these systems.



2.  Boundary Notation

The principles of boundary notation were first introduced by G. Spencer-Brown

in his "calculus of indications" [2].  His system of mathematics has one

fundamental concept, which is distinction.  Distinction creates perspective

by framing a space for observation, by forming the boundaries of objects, and

by distinguishing objects out of an environment.

Boundary notation interprets Spencer-Brown's calculus of indications

spatially.  This spatial interpretation denotes a distinction as a boundary,

which creates a space with content (inside) distinguished from its context

(outside).  The content of a bounded space has no ordering; the space is

inherently commutative and associative.  Sorting and rearrangement of items

does not change the value of the space, provided items do not cross

boundaries.  A boundary distinguishes content from context; crossing the

boundary changes that distinction.  Boundaries and space are the fundamental

constructs of boundary notation.

Boundary notation specifies a mathematical system with a set of equivalence

rules.  The system computes by matching a pattern from a rule and

substituting an equivalent pattern.  All boundary patterns include variables

that will match any arbitrary configuration of objects and boundaries.  This

configuration must be confinable within a single space so that a boundary can

encircle it, and when a boundary is matched, all of its contents must be

matched also.  An empty, or void, configuration can also be matched.  Using

boundary notation, we can describe the axioms of a mathematical system.  The

following applications are defined by such axioms.

3.  Boundary Logic

Boundary logic is propositional logic interpreted using boundary notation.

It uses two operators as a minimal basis for elementary logic: space provides

the OR operation; boundaries provide the NOT operation.

a OR b is  a  b

NOT a is (a)

As space, OR implicitly has commutative and associative properties.

Boundaries denote a space whose contents are logically inverted, the

demarcation between what is and what is not.  A space without contents, the

void, represents the logical FALSE.  Thus, a boundary around nothing

represents NOT FALSE, which is TRUE.  Other propositional connectives can be

constructed from this basis:

IF a THEN b is (a) b



With the semantics of boundary logic understood, manipulating logic is

simple.  The axioms for boundary logic are shown in Figure 1 using

parenthesis to draw boundaries [3].  These axioms were chosen for visual

clarity; each requires only erasure to simplify.

=============================================================================

Dominion a (   )  <==>    ( )

Pervasion a (a b)  <==>  a (b)

Involution (( a ))  <==>  a

=============================================================================

Figure 1.  Axioms of boundary logic

a and b are arbitrary configurations

A proof in boundary logic is illustrated in Figure 2.  Rules apply in

parallel: steps 2 and 3 can occur simultaneously.  Rule selection is

arbitrary: step 3 could have been the involution of b, resulting in a

different proof.  Rules apply to arbitrary configurations: steps 3 and 4 can

be combined into a single step where c and (b) match as a single

configuration.

=============================================================================

0.  (( ((a) b) ((b) c) )) (a) c Transcribe

1.     ((a) b) ((b) c)    (a) c Involution of ((a) b) ((b) c)

2.     (    b) ((b) c)    (a) c Pervasion of (a)

3.     (    b) ((b)  )    (a) c Pervasion of c

4.     (    b) (     )    (a) c Pervasion of (b)

5.             (     )         Dominion of (b) (a) c

=============================================================================

Figure 2.  Proof of ((a->b AND b->c) -> (a->c)) in boundary logic

The spatial structure of boundary logic allows visual interpretations,

including the two interpretations shown in Figure 3 [4].  When boundaries are

drawn in two dimensions, they appear as encircling boundaries, appearing

almost identical to the parenthesis notation.  Objects are free to be

rearranged within a space.  Another representation, the distinction network,

connects boundaries to contents as edges in a network.  The network proceeds

from the space of the entire expression at the top, to the variables at the

bottom.  The network form draws variables only once.



=============================================================================

     Encircling Boundaries                Distinction Network

=============================================================================

Figure 3.  Visualizations of the boundary logic expression

((((a) b) ((b) c))) (a) c equivalent to ((a->b AND b->c) -> (a->c))

Axioms are animated differently for encircling boundaries than for

distinction networks.  The encircling boundaries fade in new patterns and

fade out old ones, without a break in continuity.  The distinction network,

in contrast, is shown in Figure 4.  When removing boundary nodes, the network

connections meet and stretch into place like rubber bands.  Other animations

simply break connections.  (See [4] for implementation details.)

=============================================================================

     Dominion                Pervasion              Involution

=============================================================================

Figure 4.  Visualization of boundary logic axioms



4.  Boundary Algebra

Boundary algebra applies boundary notation to perform algebraic manipulation.

Any notation that expresses elementary algebra requires more than a single

distinction.  For this purpose, we extended boundary notation by attaching

descriptors to each boundary that define each distinction.  The rest of

boundary mathematics remains intact: space is still commutative and

associative, and rules still apply in parallel.

The fundamental construct of boundary algebra for expressing numbers is the

unit, expressed here by an asterisk, *.  A unit is necessary to "add like

things" and to perform multiplication.  Fundamentally, space has the

semantics of addition; configurations add by incorporating them in the same

space.  If they have the same unit, the result can be simplified.  On the

other hand, multiplication replaces the units of one expression with the

entirety of the other.

We represent elementary algebra in boundary notation using four special

purpose distinctions.  The rules listed in Figure 5 define these

distinctions.  The first two rules accommodate numerical representation.

Cardinality allows replacement of two identical configurations by a single

configuration, distinguished as doubled.  The inverse distinction indicates

an inversion of the contents, which would cancel with a non-inverted copy

when in the same space.  Both of these distinctions can be distributed across

their contents.

=============================================================================

Cardinality            * *  <==>  Two[*]

Inverse   * Inverse[*]  <==>

Lambda {f[#] g[#]}[*]  <==>  f[*] g[*]

Composition        f[g[*]]  <==>  (f g)[*]

Distribution         f[a b]  <==>  f[a] f[b]

=============================================================================

Figure 5.  Rules of boundary algebra

a and b are arbitrary configurations

f and g are arbitrary distinction configurations

Two special-purpose distinctions allow the building of algebraic structure.

The lambda distinction abstracts a common configuration out of an expression,

replacing it with a place holder.  The other special-purpose distinction



allows composition of distinctions by abstracting them into a separate space.

Once in a separate space, distinctions themselves can be modified by boundary

algebra rules, creating exponents.  The distinction composition rule applies

only to commutative and associative distinctions.

The special purpose distinctions above combine with additional distinctions

representing algebraic unknowns.  If we assume these distinctions represent

quantities, then we can apply rules to them as such.  Quantitative

distinctions are commutative and associative, allowing composition.

Quantitative distinctions can also be distributed across their content (the

distribution rule).  The examples in Figure 6 include a mixture of predefined

and unknown distinctions.

=============================================================================

      Stacks           Distinction Spaces      Labeled Boundaries

=============================================================================

Figure 6. Visualizations of the boundary algebra expression

a[Two[x][*]] b[x[*]] c[*] equivalent to ax2+bx+c

Figure 6 shows three visual interpretations of boundary algebra.  Stacks use

blocks for each object, and stack to specify distinction.  The distinction

spaces approach draws boundaries as pairs of spaces, one to describe the

boundary, the other to specify its content.  This representation is

vertically dependent.  The third interpretation attaches objects to

boundaries, creating labeled boundaries.

These approaches provide visual interpretations of the boundary algebra

rules.  Figure 7 shows this visualization for labeled boundaries.  Using just

these visual rules, algebraic manipulation is possible; they are sufficiently

powerful to visually derive the quadratic formula.



=============================================================================

    Cardinality

    Inverse

    Lambda

    Composition

    Distribution

=============================================================================

Figure 7.  Visualization of boundary algebra axioms

5.  Conclusion

Mathematics can be made visual with boundary notation.  Boundary notation

forms expressions using boundaries to separate spaces and distinguish

objects.  Computation occurs on these spatial structures rather than on

typographical structures.  The resulting mathematical interactions are visual

and can be fully animated.

Future work in this area will focus on the implementation of boundary

algebra.  Our current work in boundary logic is complete, having shown the

boundary rules to be axiomatic and having implemented software to perform and

animate logic proofs [4].  The rules of the boundary algebra must be

similarly refined and a software implementation built.  This implementation

will demonstrate the power and interactivity of visual mathematics using

boundary notation.



REFERENCES

We thank Ann Miller, Meredith Bricken and Kimberly Osberg for their

insightful comments on drafts of this paper.

[1] K. M.  Kahn and V. A. Saraswat. Complete Visualizations of Concurrent

Programs and their Executions.  In Proceedings of the IEEE Workshop on Visual

Languages, pages 7-15, 1990.

[2] G. Spencer-Brown.  Laws of Form.  Bantam: New York, 1969.

[3] W. Bricken.  A Deductive Mathematics for Efficient Reasoning.  Human

Interface Technology Laboratory, Technical Report No. HITL-R-86-2, 1986.

[4] W. Bricken.  An Introduction to Boundary Logic with the Losp Deductive

Engine.  Human Interface Technology Laboratory, Technical Report No. HITL-R-

89-1, 1989.


